aifeifei798's picture
Update app.py
6b323fa verified
raw
history blame
2.3 kB
from PIL import Image
import spaces
import gradio as gr
from transformers import (
AutoProcessor,
AutoModelForCausalLM,
)
import torch
import subprocess
subprocess.run(
"pip install flash-attn --no-build-isolation",
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
shell=True,
)
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
Florence_models = AutoModelForCausalLM.from_pretrained(
"microsoft/Florence-2-large",
torch_dtype=torch_dtype,
trust_remote_code=True).to(device)
Florence_processors = AutoProcessor.from_pretrained(
"microsoft/Florence-2-large", trust_remote_code=True)
@spaces.GPU
def feifeiflorence(
image,
progress=gr.Progress(track_tqdm=True),
):
image = Image.fromarray(image)
task_prompt = "<MORE_DETAILED_CAPTION>"
if image.mode != "RGB":
image = image.convert("RGB")
inputs = Florence_processors(text=task_prompt,
images=image,
return_tensors="pt").to(device, torch_dtype)
generated_ids = Florence_models.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=1024,
num_beams=3,
do_sample=False,
)
generated_text = Florence_processors.batch_decode(
generated_ids, skip_special_tokens=False)[0]
parsed_answer = Florence_processors.post_process_generation(
generated_text,
task=task_prompt,
image_size=(image.width, image.height))
out_text=parsed_answer["<MORE_DETAILED_CAPTION>"]
width, height = image.size
return out_text,f"width={width} height={height}"
with gr.Blocks() as demo:
gr.Markdown(DESCRIPTION)
with gr.Tab(label="Florence-2 Image Flux Prompt"):
with gr.Row():
with gr.Column():
input_img = gr.Image(label="Input Picture")
submit_btn = gr.Button(value="Submit")
with gr.Column():
output_text = gr.Textbox(label="Output Text")
output_img_text = gr.Textbox(label="Output width and height")
submit_btn.click(process_image, [input_img], [output_text, output_img_text])
demo.launch()