import gradio as gr import torch import librosa from transformers import AutoTokenizer, AutoModelForSequenceClassification, TextClassificationPipeline, AutoModelForTokenClassification, TokenClassificationPipeline, Wav2Vec2ForCTC, Wav2Vec2Processor, Wav2Vec2ProcessorWithLM # ASR model_name = "jonatasgrosman/wav2vec2-large-xlsr-53-english" processor_asr = Wav2Vec2Processor.from_pretrained(model_name) model_asr = Wav2Vec2ForCTC.from_pretrained(model_name) # Classifier Intent model_name = 'qanastek/XLMRoberta-Alexa-Intents-Classification' tokenizer_intent = AutoTokenizer.from_pretrained(model_name) model_intent = AutoModelForSequenceClassification.from_pretrained(model_name) classifier_intent = TextClassificationPipeline(model=model_intent, tokenizer=tokenizer_intent) # Classifier Language model_name = 'qanastek/51-languages-classifier' tokenizer_langs = AutoTokenizer.from_pretrained(model_name) model_langs = AutoModelForSequenceClassification.from_pretrained(model_name) classifier_language = TextClassificationPipeline(model=model_langs, tokenizer=tokenizer_langs) # NER Extractor model_name = 'qanastek/XLMRoberta-Alexa-Intents-NER-NLU' tokenizer_ner = AutoTokenizer.from_pretrained(model_name) model_ner = AutoModelForTokenClassification.from_pretrained(model_name) predict_ner = TokenClassificationPipeline(model=model_ner, tokenizer=tokenizer_ner) def greet(name): return "Hello " + name + "!!" iface = gr.Interface(fn=greet, inputs="text", outputs="text") iface.launch()