|
"""LangGraph Agent"""
|
|
import os
|
|
from dotenv import load_dotenv
|
|
from langgraph.graph import START, StateGraph, MessagesState
|
|
from langgraph.prebuilt import tools_condition
|
|
from langgraph.prebuilt import ToolNode
|
|
from langchain_google_genai import ChatGoogleGenerativeAI
|
|
from langchain_groq import ChatGroq
|
|
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
|
|
from langchain_community.tools.tavily_search import TavilySearchResults
|
|
from langchain_community.document_loaders import WikipediaLoader
|
|
from langchain_community.document_loaders import ArxivLoader
|
|
from langchain_community.vectorstores import SupabaseVectorStore
|
|
from langchain_core.messages import SystemMessage, HumanMessage
|
|
from langchain_core.tools import tool
|
|
from langchain.tools.retriever import create_retriever_tool
|
|
from supabase.client import Client, create_client
|
|
|
|
load_dotenv()
|
|
|
|
@tool
|
|
def multiply(a: int, b: int) -> int:
|
|
"""Multiply two numbers.
|
|
Args:
|
|
a: first int
|
|
b: second int
|
|
"""
|
|
return a * b
|
|
|
|
@tool
|
|
def add(a: int, b: int) -> int:
|
|
"""Add two numbers.
|
|
|
|
Args:
|
|
a: first int
|
|
b: second int
|
|
"""
|
|
return a + b
|
|
|
|
@tool
|
|
def subtract(a: int, b: int) -> int:
|
|
"""Subtract two numbers.
|
|
|
|
Args:
|
|
a: first int
|
|
b: second int
|
|
"""
|
|
return a - b
|
|
|
|
@tool
|
|
def divide(a: int, b: int) -> int:
|
|
"""Divide two numbers.
|
|
|
|
Args:
|
|
a: first int
|
|
b: second int
|
|
"""
|
|
if b == 0:
|
|
raise ValueError("Cannot divide by zero.")
|
|
return a / b
|
|
|
|
@tool
|
|
def modulus(a: int, b: int) -> int:
|
|
"""Get the modulus of two numbers.
|
|
|
|
Args:
|
|
a: first int
|
|
b: second int
|
|
"""
|
|
return a % b
|
|
|
|
@tool
|
|
def wiki_search(query: str) -> str:
|
|
"""Search Wikipedia for a query and return maximum 2 results.
|
|
|
|
Args:
|
|
query: The search query."""
|
|
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
|
|
formatted_search_docs = "\n\n---\n\n".join(
|
|
[
|
|
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
|
|
for doc in search_docs
|
|
])
|
|
return {"wiki_results": formatted_search_docs}
|
|
|
|
@tool
|
|
def web_search(query: str) -> str:
|
|
"""Search Tavily for a query and return maximum 3 results.
|
|
|
|
Args:
|
|
query: The search query."""
|
|
search_docs = TavilySearchResults(max_results=3).invoke(query=query)
|
|
formatted_search_docs = "\n\n---\n\n".join(
|
|
[
|
|
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
|
|
for doc in search_docs
|
|
])
|
|
return {"web_results": formatted_search_docs}
|
|
|
|
@tool
|
|
def arvix_search(query: str) -> str:
|
|
"""Search Arxiv for a query and return maximum 3 result.
|
|
|
|
Args:
|
|
query: The search query."""
|
|
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
|
|
formatted_search_docs = "\n\n---\n\n".join(
|
|
[
|
|
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
|
|
for doc in search_docs
|
|
])
|
|
return {"arvix_results": formatted_search_docs}
|
|
|
|
|
|
|
|
|
|
with open("system_prompt.txt", "r", encoding="utf-8") as f:
|
|
system_prompt = f.read()
|
|
|
|
|
|
sys_msg = SystemMessage(content=system_prompt)
|
|
|
|
|
|
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
|
|
supabase: Client = create_client(
|
|
os.environ.get("SUPABASE_URL"),
|
|
os.environ.get("SUPABASE_SERVICE_KEY"))
|
|
vector_store = SupabaseVectorStore(
|
|
client=supabase,
|
|
embedding= embeddings,
|
|
table_name="documents",
|
|
query_name="match_documents_langchain",
|
|
)
|
|
create_retriever_tool = create_retriever_tool(
|
|
retriever=vector_store.as_retriever(),
|
|
name="Question Search",
|
|
description="A tool to retrieve similar questions from a vector store.",
|
|
)
|
|
|
|
|
|
|
|
tools = [
|
|
multiply,
|
|
add,
|
|
subtract,
|
|
divide,
|
|
modulus,
|
|
wiki_search,
|
|
web_search,
|
|
arvix_search,
|
|
]
|
|
|
|
|
|
def build_graph(provider: str = "google"):
|
|
"""Build the graph"""
|
|
|
|
if provider == "google":
|
|
|
|
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
|
|
elif provider == "groq":
|
|
|
|
llm = ChatGroq(model="qwen-qwq-32b", temperature=0)
|
|
elif provider == "huggingface":
|
|
|
|
llm = ChatHuggingFace(
|
|
llm=HuggingFaceEndpoint(
|
|
url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
|
|
temperature=0,
|
|
),
|
|
)
|
|
else:
|
|
raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.")
|
|
|
|
llm_with_tools = llm.bind_tools(tools)
|
|
|
|
|
|
def assistant(state: MessagesState):
|
|
"""Assistant node"""
|
|
return {"messages": [llm_with_tools.invoke(state["messages"])]}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from langchain_core.messages import AIMessage
|
|
|
|
def retriever(state: MessagesState):
|
|
query = state["messages"][-1].content
|
|
similar_doc = vector_store.similarity_search(query, k=1)[0]
|
|
|
|
content = similar_doc.page_content
|
|
if "Final answer :" in content:
|
|
answer = content.split("Final answer :")[-1].strip()
|
|
else:
|
|
answer = content.strip()
|
|
|
|
return {"messages": [AIMessage(content=answer)]}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
builder = StateGraph(MessagesState)
|
|
builder.add_node("retriever", retriever)
|
|
|
|
|
|
builder.set_entry_point("retriever")
|
|
builder.set_finish_point("retriever")
|
|
|
|
|
|
return builder.compile()
|
|
|