GramerTest01 / app.py
ZeeAI1's picture
Update app.py
19cfcf0 verified
raw
history blame
1.78 kB
import streamlit as st
from transformers import T5ForConditionalGeneration, T5Tokenizer
import torch
# Load model and tokenizer from Hugging Face
@st.cache_resource
def load_model():
model_name = model_name = "pszemraj/flan-t5-large-grammar-synthesis"
tokenizer = T5Tokenizer.from_pretrained(model_name)
model = T5ForConditionalGeneration.from_pretrained(model_name)
return tokenizer, model
tokenizer, model = load_model()
# Function to generate corrected sentence
def correct_sentence(sentence):
input_text = "gec: " + sentence
input_ids = tokenizer.encode(input_text, return_tensors="pt", max_length=512, truncation=True)
outputs = model.generate(input_ids, max_length=512, num_beams=4, early_stopping=True)
corrected = tokenizer.decode(outputs[0], skip_special_tokens=True)
return corrected
# Streamlit UI
st.title("πŸ“ Advanced Grammar Correction Assistant")
st.write("Enter a sentence. I'll correct it and explain the changes.")
user_input = st.text_area("Your Sentence", height=150)
if st.button("Correct & Explain"):
if user_input.strip() == "":
st.warning("Please enter a sentence.")
else:
corrected = correct_sentence(user_input)
st.markdown("### βœ… Correction:")
st.success(corrected)
st.markdown("### πŸ” Explanation:")
st.info(f"""
*Original:* {user_input}
*Corrected:* {corrected}
Here's what changed:
- I used an AI model trained to correct grammar and sentence structure.
- To give detailed explanations for each mistake (like verb tense, subject-verb agreement, or punctuation), the app can be extended using another model or logic to compare the two sentences line by line.
""")
st.caption("Model used: vennify/t5-base-grammar-correction")