File size: 9,571 Bytes
62f6628
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f35b114
 
62f6628
 
 
 
 
 
 
 
 
 
ff190ea
 
 
 
 
 
 
 
 
 
 
 
 
62f6628
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff190ea
 
 
62f6628
 
 
 
 
 
 
 
 
ff190ea
 
 
 
 
62f6628
 
 
 
 
 
 
 
 
 
 
f35b114
 
62f6628
f35b114
62f6628
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f35b114
 
 
 
62f6628
 
f35b114
 
 
 
62f6628
 
f35b114
62f6628
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff190ea
62f6628
 
 
 
 
 
 
 
 
 
 
 
 
cf1ca14
 
 
62f6628
cf1ca14
62f6628
 
 
 
 
 
 
 
 
 
 
 
 
f35b114
62f6628
 
62dbcfb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import os
import gradio as gr
import time
import numpy as np
import onnx
import onnxruntime as ort
import torch
from onnxconverter_common.float16 import convert_float_to_float16
from onnxslim import slim
from spandrel import ModelLoader, ImageModelDescriptor
import spandrel_extra_arches
from rich.traceback import install

def get_out_path(out_dir: str, name: str, opset: int, fp16: bool = False, optimized: bool = False) -> str:
    filename = f"{name}_fp{'16' if fp16 else '32'}_op{opset}{'_onnxslim' if optimized else ''}.onnx"
    return os.path.normpath(os.path.join(out_dir, filename))

def convert_and_save_onnx(model, name: str, torch_input, out_dir: str, opset: int, use_static_shapes: bool) -> tuple[onnx.ModelProto, str]:
    if use_static_shapes:
        dynamic_axes = None
        input_names = None
        output_names = None
        #input_names = ["input"]
        #output_names = ["output"]
    else:
        dynamic_axes = {
            "input": {0: "batch_size", 2: "width", 3: "height"},
            "output": {0: "batch_size", 2: "width", 3: "height"},
        }
        input_names = ["input"]
        output_names = ["output"]

    out_path = get_out_path(out_dir, name, opset, False)

    #if isinstance(model, ImageModelDescriptor):

    #this class was taken from chainner. Running the model through this seems to fix some issues with various arches.
    class FakeModel(torch.nn.Module):
        def __init__(self, model: ImageModelDescriptor):
            super().__init__()
            self.model = model

        def forward(self, x: torch.Tensor):
            return self.model(x)

    model = FakeModel(model)

    torch.onnx.export(
        model,
        (torch_input,),
        out_path,
        dynamo=False,
        verbose=False,
        opset_version=opset,
        dynamic_axes=dynamic_axes,
        input_names=input_names,
        output_names=output_names,
    )
    model_proto = onnx.load(out_path)
    return model_proto, out_path

def verify_onnx(model, torch_input, onnx_path: str) -> None:
    with torch.inference_mode():
        torch_output_np = model(torch_input).cpu().numpy()

    onnx_model = onnx.load(onnx_path)
    onnx.checker.check_model(onnx_model)

    try:
        ort_session = ort.InferenceSession(onnx_path, providers=["CPUExecutionProvider"])
        ort_inputs = {ort_session.get_inputs()[0].name: torch_input.cpu().numpy()}
        onnx_output = ort_session.run(None, ort_inputs)
        np.testing.assert_allclose(
            torch_output_np,
            onnx_output[0],
            rtol=1e-02,
            atol=1e-03,
        )
        print("ONNX output verified against PyTorch output successfully.")
    except AssertionError as e:
        print(f"ONNX verification completed with warnings: {e}")
        gr.Warning("ONNX verification completed with warnings")
    except Exception as e:
        print(f"ONNX verification failed: {e}")
        gr.Warning("ONNX verification failed")


def convert_pipeline(model_path: str, opset: int = 17, verify: bool = True, optimize: bool = True, fp16: bool = False, static: bool = False) -> str:
    loader = ModelLoader()
    model_desc = loader.load_from_file(model_path)
    assert isinstance(model_desc, ImageModelDescriptor)

    model = model_desc.model.to("cpu").eval()
    model_name = os.path.splitext(os.path.basename(model_path))[0]

    # Generate dummy input
    if static:
        height, width = 256, 256
        torch_input = torch.randn(1, model_desc.input_channels, height, width, device="cpu")
    else:
        torch_input = torch.randn(1, model_desc.input_channels, 32, 32, device="cpu")

    out_dir = "./onnx"
    os.makedirs(out_dir, exist_ok=True)

    # Convert to ONNX
    start_time = time.time()
    model_proto, out_path_fp32 = convert_and_save_onnx(
        model, model_name, torch_input, out_dir, opset, static
    )
    out_path = out_path_fp32

    print(f"Saved to {out_path_fp32} in {time.time() - start_time:.2f} seconds.")

    # Verify
    if verify:
        verify_onnx(model, torch_input, out_path_fp32)

    # Optimize
    if optimize:
        model_proto = slim(model_proto)
        session_opt = ort.SessionOptions()
        session_opt.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_EXTENDED
        session_opt.optimized_model_filepath = get_out_path(out_dir, model_name, opset, False, True)
        ort.InferenceSession(out_path_fp32, session_opt)
        if verify:
            verify_onnx(model, torch_input, session_opt.optimized_model_filepath)
        model_proto = onnx.load(session_opt.optimized_model_filepath)
        out_path = session_opt.optimized_model_filepath

    # Convert to FP16
    if fp16:
        start_time = time.time()
        out_path = get_out_path(out_dir, model_name, opset, True, optimize)
        model_proto_fp16 = convert_float_to_float16(model_proto)
        onnx.save(model_proto_fp16, out_path)
        print(f"Saved to {out_path_fp32} in {time.time() - start_time:.2f} seconds.")

    return out_path

def load_model(model_path: str):
    if not model_path:
        return "Ready"
    
    loader = ModelLoader()
    try:
        model = loader.load_from_file(model_path)
        assert isinstance(model, ImageModelDescriptor)

        architecture_info = {
            'architecture_name': getattr(model.architecture, 'name', str(model.architecture)),
            'input_channels': model.input_channels,
            'output_channels': model.output_channels,
            'scale': model.scale,
            'tags': model.tags,
            'supports_fp16': model.supports_half
            #'supports_bf16': model.supports_bfloat16,
            #'size_requirements': model.size_requirements
        }
        
        if model.supports_half:
            return [str(architecture_info), gr.Radio(choices=["True", "False"], interactive=True, label="FP16 - Export at half precision. Not supported by all models.")]
        else: 
            return [str(architecture_info), gr.Radio(choices=["True", "False"], value="False", interactive=False, label="FP16 - Export at half precision. Not supported by all models.")]
        
    except Exception as e:
        return [f"Error loading model: {e}", gr.Radio(choices=["True", "False"], interactive=True, label="FP16 - Export at half precision. Not supported by all models.")]

def process_choices(opset, fp16, static, slim, file):
    if not file:
        print("No file loaded.")
        gr.Warning("No file loaded.")
        yield [gr.Button("Convert", interactive=True), gr.DownloadButton(label="💾 Download Converted Model", visible=False)]
        return
    
    # Convert string choices to boolean
    fp16 = fp16 == "True"
    static = static == "True" 
    slim = slim == "True"
    
    yield [gr.Button("Processing", interactive=False), gr.DownloadButton(label="💾 Download Converted Model", visible=False)]
    
    try:
        result = convert_pipeline(file, opset, True, slim, fp16, static)
        short_name = os.path.basename(result)
        yield [gr.Button("Convert", interactive=True), gr.DownloadButton(label=f"💾 {short_name}", value=result, visible=True)]
        return
    except Exception as e:
        print(f"{e}")
        gr.Warning("Conversion error.")
        yield [gr.Button("Convert", interactive=True), gr.DownloadButton(label="💾 Download Converted Model", visible=False)]
        return

# Create Gradio interface
with gr.Blocks(title="PTH to ONNX Converter") as demo:
    install()
    spandrel_extra_arches.install()

    file_upload = gr.File(label="Upload a PyTorch model", file_types=['.pth', '.pt', '.safetensors'])
    metadata = gr.Textbox(value="Ready", label="File Information")
    
    dropdown_opset = gr.Dropdown(choices=[17, 18, 19, 20], value=20, label="Opset")
    radio_fp16 = gr.Radio(choices=["True", "False"], value="False", label="FP16 - Not supported by all models. Not very useful because FP16 TRT engines can still be built from FP32 ONNX models.")
    radio_static = gr.Radio(choices=["True", "False"], value="False", label="Static Shapes - Might be required by some models, but can cause slower performance.")
    radio_slim = gr.Radio(choices=["True", "False"], value="False", label="OnnxSlim - Can cause issues in some models. I have not yet found any cases where it helps. May remove in the future.")
    
    gr.Markdown("After converting, click the logs button at the top to check for any errors or warnings.")
    process_button = gr.Button("Convert", interactive=True)
    file_output = gr.DownloadButton(label="💾 Download Converted Model", visible=False)

    gr.Markdown("""

    # Resources

    - [OpenModelDB](https://openmodeldb.info): Find upscaling models here

    - [VideoJaNai](https://github.com/the-database/VideoJaNai): For upscaling videos using ONNX models

    - [REAL Video Enhancer](https://github.com/TNTwise/REAL-Video-Enhancer): For upscaling videos using ONNX models

    """)
    
    process_button.click(fn=process_choices, 
                        inputs=[dropdown_opset, radio_fp16, radio_static, radio_slim, file_upload], 
                        outputs=[process_button, file_output])
    file_upload.upload(fn=load_model, inputs=file_upload, outputs=[metadata, radio_fp16])

if __name__ == "__main__":
    demo.launch(show_error=True, inbrowser=True, show_api=False, debug=False)