File size: 9,571 Bytes
62f6628 f35b114 62f6628 ff190ea 62f6628 ff190ea 62f6628 ff190ea 62f6628 f35b114 62f6628 f35b114 62f6628 f35b114 62f6628 f35b114 62f6628 f35b114 62f6628 ff190ea 62f6628 cf1ca14 62f6628 cf1ca14 62f6628 f35b114 62f6628 62dbcfb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
import os
import gradio as gr
import time
import numpy as np
import onnx
import onnxruntime as ort
import torch
from onnxconverter_common.float16 import convert_float_to_float16
from onnxslim import slim
from spandrel import ModelLoader, ImageModelDescriptor
import spandrel_extra_arches
from rich.traceback import install
def get_out_path(out_dir: str, name: str, opset: int, fp16: bool = False, optimized: bool = False) -> str:
filename = f"{name}_fp{'16' if fp16 else '32'}_op{opset}{'_onnxslim' if optimized else ''}.onnx"
return os.path.normpath(os.path.join(out_dir, filename))
def convert_and_save_onnx(model, name: str, torch_input, out_dir: str, opset: int, use_static_shapes: bool) -> tuple[onnx.ModelProto, str]:
if use_static_shapes:
dynamic_axes = None
input_names = None
output_names = None
#input_names = ["input"]
#output_names = ["output"]
else:
dynamic_axes = {
"input": {0: "batch_size", 2: "width", 3: "height"},
"output": {0: "batch_size", 2: "width", 3: "height"},
}
input_names = ["input"]
output_names = ["output"]
out_path = get_out_path(out_dir, name, opset, False)
#if isinstance(model, ImageModelDescriptor):
#this class was taken from chainner. Running the model through this seems to fix some issues with various arches.
class FakeModel(torch.nn.Module):
def __init__(self, model: ImageModelDescriptor):
super().__init__()
self.model = model
def forward(self, x: torch.Tensor):
return self.model(x)
model = FakeModel(model)
torch.onnx.export(
model,
(torch_input,),
out_path,
dynamo=False,
verbose=False,
opset_version=opset,
dynamic_axes=dynamic_axes,
input_names=input_names,
output_names=output_names,
)
model_proto = onnx.load(out_path)
return model_proto, out_path
def verify_onnx(model, torch_input, onnx_path: str) -> None:
with torch.inference_mode():
torch_output_np = model(torch_input).cpu().numpy()
onnx_model = onnx.load(onnx_path)
onnx.checker.check_model(onnx_model)
try:
ort_session = ort.InferenceSession(onnx_path, providers=["CPUExecutionProvider"])
ort_inputs = {ort_session.get_inputs()[0].name: torch_input.cpu().numpy()}
onnx_output = ort_session.run(None, ort_inputs)
np.testing.assert_allclose(
torch_output_np,
onnx_output[0],
rtol=1e-02,
atol=1e-03,
)
print("ONNX output verified against PyTorch output successfully.")
except AssertionError as e:
print(f"ONNX verification completed with warnings: {e}")
gr.Warning("ONNX verification completed with warnings")
except Exception as e:
print(f"ONNX verification failed: {e}")
gr.Warning("ONNX verification failed")
def convert_pipeline(model_path: str, opset: int = 17, verify: bool = True, optimize: bool = True, fp16: bool = False, static: bool = False) -> str:
loader = ModelLoader()
model_desc = loader.load_from_file(model_path)
assert isinstance(model_desc, ImageModelDescriptor)
model = model_desc.model.to("cpu").eval()
model_name = os.path.splitext(os.path.basename(model_path))[0]
# Generate dummy input
if static:
height, width = 256, 256
torch_input = torch.randn(1, model_desc.input_channels, height, width, device="cpu")
else:
torch_input = torch.randn(1, model_desc.input_channels, 32, 32, device="cpu")
out_dir = "./onnx"
os.makedirs(out_dir, exist_ok=True)
# Convert to ONNX
start_time = time.time()
model_proto, out_path_fp32 = convert_and_save_onnx(
model, model_name, torch_input, out_dir, opset, static
)
out_path = out_path_fp32
print(f"Saved to {out_path_fp32} in {time.time() - start_time:.2f} seconds.")
# Verify
if verify:
verify_onnx(model, torch_input, out_path_fp32)
# Optimize
if optimize:
model_proto = slim(model_proto)
session_opt = ort.SessionOptions()
session_opt.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_EXTENDED
session_opt.optimized_model_filepath = get_out_path(out_dir, model_name, opset, False, True)
ort.InferenceSession(out_path_fp32, session_opt)
if verify:
verify_onnx(model, torch_input, session_opt.optimized_model_filepath)
model_proto = onnx.load(session_opt.optimized_model_filepath)
out_path = session_opt.optimized_model_filepath
# Convert to FP16
if fp16:
start_time = time.time()
out_path = get_out_path(out_dir, model_name, opset, True, optimize)
model_proto_fp16 = convert_float_to_float16(model_proto)
onnx.save(model_proto_fp16, out_path)
print(f"Saved to {out_path_fp32} in {time.time() - start_time:.2f} seconds.")
return out_path
def load_model(model_path: str):
if not model_path:
return "Ready"
loader = ModelLoader()
try:
model = loader.load_from_file(model_path)
assert isinstance(model, ImageModelDescriptor)
architecture_info = {
'architecture_name': getattr(model.architecture, 'name', str(model.architecture)),
'input_channels': model.input_channels,
'output_channels': model.output_channels,
'scale': model.scale,
'tags': model.tags,
'supports_fp16': model.supports_half
#'supports_bf16': model.supports_bfloat16,
#'size_requirements': model.size_requirements
}
if model.supports_half:
return [str(architecture_info), gr.Radio(choices=["True", "False"], interactive=True, label="FP16 - Export at half precision. Not supported by all models.")]
else:
return [str(architecture_info), gr.Radio(choices=["True", "False"], value="False", interactive=False, label="FP16 - Export at half precision. Not supported by all models.")]
except Exception as e:
return [f"Error loading model: {e}", gr.Radio(choices=["True", "False"], interactive=True, label="FP16 - Export at half precision. Not supported by all models.")]
def process_choices(opset, fp16, static, slim, file):
if not file:
print("No file loaded.")
gr.Warning("No file loaded.")
yield [gr.Button("Convert", interactive=True), gr.DownloadButton(label="💾 Download Converted Model", visible=False)]
return
# Convert string choices to boolean
fp16 = fp16 == "True"
static = static == "True"
slim = slim == "True"
yield [gr.Button("Processing", interactive=False), gr.DownloadButton(label="💾 Download Converted Model", visible=False)]
try:
result = convert_pipeline(file, opset, True, slim, fp16, static)
short_name = os.path.basename(result)
yield [gr.Button("Convert", interactive=True), gr.DownloadButton(label=f"💾 {short_name}", value=result, visible=True)]
return
except Exception as e:
print(f"{e}")
gr.Warning("Conversion error.")
yield [gr.Button("Convert", interactive=True), gr.DownloadButton(label="💾 Download Converted Model", visible=False)]
return
# Create Gradio interface
with gr.Blocks(title="PTH to ONNX Converter") as demo:
install()
spandrel_extra_arches.install()
file_upload = gr.File(label="Upload a PyTorch model", file_types=['.pth', '.pt', '.safetensors'])
metadata = gr.Textbox(value="Ready", label="File Information")
dropdown_opset = gr.Dropdown(choices=[17, 18, 19, 20], value=20, label="Opset")
radio_fp16 = gr.Radio(choices=["True", "False"], value="False", label="FP16 - Not supported by all models. Not very useful because FP16 TRT engines can still be built from FP32 ONNX models.")
radio_static = gr.Radio(choices=["True", "False"], value="False", label="Static Shapes - Might be required by some models, but can cause slower performance.")
radio_slim = gr.Radio(choices=["True", "False"], value="False", label="OnnxSlim - Can cause issues in some models. I have not yet found any cases where it helps. May remove in the future.")
gr.Markdown("After converting, click the logs button at the top to check for any errors or warnings.")
process_button = gr.Button("Convert", interactive=True)
file_output = gr.DownloadButton(label="💾 Download Converted Model", visible=False)
gr.Markdown("""
# Resources
- [OpenModelDB](https://openmodeldb.info): Find upscaling models here
- [VideoJaNai](https://github.com/the-database/VideoJaNai): For upscaling videos using ONNX models
- [REAL Video Enhancer](https://github.com/TNTwise/REAL-Video-Enhancer): For upscaling videos using ONNX models
""")
process_button.click(fn=process_choices,
inputs=[dropdown_opset, radio_fp16, radio_static, radio_slim, file_upload],
outputs=[process_button, file_output])
file_upload.upload(fn=load_model, inputs=file_upload, outputs=[metadata, radio_fp16])
if __name__ == "__main__":
demo.launch(show_error=True, inbrowser=True, show_api=False, debug=False) |