File size: 1,461 Bytes
62dbcfb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import numpy as np
import pytest
from traiNNer.metrics.psnr_ssim import calculate_psnr, calculate_ssim


def test_calculate_psnr() -> None:
    """Test metric: calculate_psnr"""

    # mismatched image shapes
    with pytest.raises(AssertionError):
        calculate_psnr(np.ones((16, 16)), np.ones((10, 10)), crop_border=0)

    # wrong input order
    with pytest.raises(ValueError):
        calculate_psnr(
            np.ones((16, 16)), np.ones((16, 16)), crop_border=1, input_order="WRONG"
        )

    out = calculate_psnr(
        np.ones((10, 10, 3)),
        np.ones((10, 10, 3)) * 2,
        crop_border=1,
        test_y_channel=True,
    )
    assert isinstance(out, float)

    # test float inf
    out = calculate_psnr(np.ones((10, 10, 3)), np.ones((10, 10, 3)), crop_border=0)
    assert out == float("inf")


def test_calculate_ssim() -> None:
    """Test metric: calculate_ssim"""

    # mismatched image shapes
    with pytest.raises(AssertionError):
        calculate_ssim(np.ones((16, 16)), np.ones((10, 10)), crop_border=0)

    # wrong input order
    with pytest.raises(ValueError):
        calculate_ssim(
            np.ones((16, 16)), np.ones((16, 16)), crop_border=1, input_order="WRONG"
        )

    out = calculate_ssim(
        np.ones((10, 10, 3)),
        np.ones((10, 10, 3)) * 2,
        crop_border=1,
        test_y_channel=True,
    )
    assert isinstance(out, float)