File size: 9,244 Bytes
62dbcfb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
import os
import time
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "1"
from traiNNer.check.check_dependencies import check_dependencies
if __name__ == "__main__":
check_dependencies()
import argparse
import logging
from os import path as osp
import torch
from rich.pretty import pretty_repr
from rich.traceback import install
from tensorboard.backend.event_processing import event_accumulator
from torch.utils.data import DataLoader
from torch.utils.tensorboard.writer import SummaryWriter
from traiNNer.data import build_dataloader, build_dataset
from traiNNer.data.data_sampler import EnlargedSampler
from traiNNer.data.paired_image_dataset import PairedImageDataset
from traiNNer.data.paired_video_dataset import PairedVideoDataset
from traiNNer.models import build_model
from traiNNer.utils import (
get_env_info,
get_root_logger,
get_time_str,
init_tb_logger,
init_wandb_logger,
make_exp_dirs,
scandir,
)
from traiNNer.utils.config import Config
from traiNNer.utils.misc import set_random_seed
from traiNNer.utils.options import copy_opt_file
from traiNNer.utils.redux_options import ReduxOptions
def init_tb_loggers(opt: ReduxOptions) -> SummaryWriter | None:
# initialize wandb logger before tensorboard logger to allow proper sync
assert opt.logger is not None
assert opt.root_path is not None
if (opt.logger.wandb is not None) and (opt.logger.wandb.project is not None):
assert opt.logger.use_tb_logger, "should turn on tensorboard when using wandb"
init_wandb_logger(opt)
tb_logger = None
if opt.logger.use_tb_logger:
tb_logger = init_tb_logger(
log_dir=osp.join(opt.root_path, "tb_logger", opt.name)
)
return tb_logger
def create_train_val_dataloader(
opt: ReduxOptions,
args: argparse.Namespace,
val_enabled: bool,
logger: logging.Logger,
) -> tuple[DataLoader | None, EnlargedSampler | None, list[DataLoader], int, int]:
assert isinstance(opt.num_gpu, int)
assert opt.world_size is not None
assert opt.dist is not None
# create train and val dataloaders
train_loader, train_sampler, val_loaders, total_epochs, total_iters = (
None,
None,
[],
0,
0,
)
for phase, dataset_opt in opt.datasets.items():
if phase == "train":
pass
elif phase.split("_")[0] in {"val", "test"}:
if val_enabled:
val_set = build_dataset(dataset_opt)
val_loader = build_dataloader(
val_set,
dataset_opt,
num_gpu=opt.num_gpu,
dist=opt.dist,
sampler=None,
seed=opt.manual_seed,
)
logger.info(
"Number of val images/folders in %s: %d",
dataset_opt.name,
len(val_set),
)
val_loaders.append(val_loader)
else:
logger.info(
"Validation is disabled, skip building val dataset %s.",
dataset_opt.name,
)
else:
raise ValueError(f"Dataset phase {phase} is not recognized.")
return train_loader, train_sampler, val_loaders, total_epochs, total_iters
def get_start_iter(tb_logger: SummaryWriter, save_checkpoint_freq: int) -> int:
log_dir = tb_logger.log_dir
ea = event_accumulator.EventAccumulator(log_dir)
ea.Reload()
if not ea.scalars.Keys():
return 0
logged_iters = set()
for tag in ea.scalars.Keys():
logged_iters.update([int(e.step) for e in ea.Scalars(tag)])
if not logged_iters:
return 0
max_logged_iter = max(logged_iters)
start_iter = ((max_logged_iter // save_checkpoint_freq) + 1) * save_checkpoint_freq
return start_iter
def train_pipeline(root_path: str) -> None:
install()
# parse options, set distributed setting, set random seed
opt, args = Config.load_config_from_file(root_path, is_train=True)
opt.root_path = root_path
assert opt.logger is not None
assert opt.manual_seed is not None
assert opt.rank is not None
assert opt.path.experiments_root is not None
assert opt.path.log is not None
torch.cuda.set_per_process_memory_fraction(fraction=1.0)
if opt.deterministic:
torch.backends.cudnn.benchmark = False
torch.use_deterministic_algorithms(True)
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8"
else:
torch.backends.cudnn.benchmark = True
assert opt.manual_seed is not None
set_random_seed(opt.manual_seed + opt.rank)
current_iter = 0
# initialize wandb and tb loggers
tb_logger = init_tb_loggers(opt)
assert tb_logger is not None, "tb_logger must be enabled"
start_iter = get_start_iter(tb_logger, opt.logger.save_checkpoint_freq)
# load resume states if necessary
make_exp_dirs(opt, start_iter > 0)
# copy the yml file to the experiment root
copy_opt_file(args.opt, opt.path.experiments_root)
# WARNING: should not use get_root_logger in the above codes, including the called functions
# Otherwise the logger will not be properly initialized
log_file = osp.join(opt.path.log, f"train_{opt.name}_{get_time_str()}.log")
logger = get_root_logger(logger_name="traiNNer", log_file=log_file)
logger.info(get_env_info())
logger.debug(pretty_repr(opt))
if opt.deterministic:
logger.info(
"Training in deterministic mode with manual seed=%d. Deterministic mode has reduced training speed.",
opt.manual_seed,
)
# create train and validation dataloaders
val_enabled = False
if opt.val:
val_enabled = opt.val.val_enabled
_, _, val_loaders, _, _ = create_train_val_dataloader(
opt, args, val_enabled, logger
)
if opt.fast_matmul:
torch.set_float32_matmul_precision("medium")
torch.backends.cudnn.allow_tf32 = True
# create model
model = build_model(opt)
if model.with_metrics:
if not any(
isinstance(val_loader.dataset, (PairedImageDataset | PairedVideoDataset))
for val_loader in val_loaders
):
raise ValueError(
"Validation metrics are enabled, at least one validation dataset must have type PairedImageDataset or PairedVideoDataset."
)
logger.info("Start testing from iter: %d.", start_iter)
ext = opt.logger.save_checkpoint_format
if opt.path.pretrain_network_g_path is not None:
pretrain_net_path = opt.path.pretrain_network_g_path
net_type = "g"
else:
raise ValueError(
"pretrain_network_g_path is required. Please enter the path to the directory of models at pretrain_network_g_path."
)
if opt.watch:
logger.info("Watching directory: %s", pretrain_net_path)
validate = True
while validate:
start_iter = get_start_iter(tb_logger, opt.logger.save_checkpoint_freq)
if osp.isdir(pretrain_net_path):
nets = list(
scandir(
pretrain_net_path,
suffix=ext,
recursive=False,
full_path=False,
)
)
nets = [v.split(f".{ext}")[0].split("_")[-1] for v in nets]
nets = sorted([int(v) for v in nets if v.isnumeric()])
# print(nets)
for net_iter in nets:
if net_iter < start_iter:
continue
if net_iter % opt.logger.save_checkpoint_freq != 0:
continue
net_path = osp.join(
pretrain_net_path, f"net_{net_type}_ema_{net_iter}.{ext}"
)
# print(net_path, osp.exists(net_path))
if not osp.exists(net_path):
net_path = osp.join(
pretrain_net_path, f"net_{net_type}_{net_iter}.{ext}"
)
# assert model.net_g is not None
net = getattr(model, f"net_{net_type}")
current_iter = net_iter
model.load_network(net, net_path, True, None)
# validation
if opt.val is not None:
multi_val_datasets = len(val_loaders) > 1
for val_loader in val_loaders:
model.validation(
val_loader,
current_iter,
tb_logger,
opt.val.save_img,
multi_val_datasets,
)
time.sleep(5)
validate = opt.watch
if tb_logger:
tb_logger.close()
if __name__ == "__main__":
root_path = osp.abspath(osp.join(__file__, osp.pardir))
train_pipeline(root_path)
|