Zana897465 commited on
Commit
554ce44
·
verified ·
1 Parent(s): 12698e9

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -155
app.py DELETED
@@ -1,155 +0,0 @@
1
- import gradio as gr
2
- import spaces
3
- from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
4
- from qwen_vl_utils import process_vision_info
5
- from PIL import Image
6
- from datetime import datetime
7
- import os
8
-
9
- # subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
10
-
11
- DESCRIPTION = "[Sparrow Qwen2-VL-7B Backend](https://github.com/katanaml/sparrow)"
12
-
13
-
14
- def array_to_image_path(image_filepath, max_width=1250, max_height=1750):
15
- if image_filepath is None:
16
- raise ValueError("No image provided. Please upload an image before submitting.")
17
-
18
- # Open the uploaded image using its filepath
19
- img = Image.open(image_filepath)
20
-
21
- # Extract the file extension from the uploaded file
22
- input_image_extension = image_filepath.split('.')[-1].lower() # Extract extension from filepath
23
-
24
- # Set file extension based on the original file, otherwise default to PNG
25
- if input_image_extension in ['jpg', 'jpeg', 'png']:
26
- file_extension = input_image_extension
27
- else:
28
- file_extension = 'png' # Default to PNG if extension is unavailable or invalid
29
-
30
- # Get the current dimensions of the image
31
- width, height = img.size
32
-
33
- # Initialize new dimensions to current size
34
- new_width, new_height = width, height
35
-
36
- # Check if the image exceeds the maximum dimensions
37
- if width > max_width or height > max_height:
38
- # Calculate the new size, maintaining the aspect ratio
39
- aspect_ratio = width / height
40
-
41
- if width > max_width:
42
- new_width = max_width
43
- new_height = int(new_width / aspect_ratio)
44
-
45
- if new_height > max_height:
46
- new_height = max_height
47
- new_width = int(new_height * aspect_ratio)
48
-
49
- # Generate a unique filename using timestamp
50
- timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
51
- filename = f"image_{timestamp}.{file_extension}"
52
-
53
- # Save the image
54
- img.save(filename)
55
-
56
- # Get the full path of the saved image
57
- full_path = os.path.abspath(filename)
58
-
59
- return full_path, new_width, new_height
60
-
61
-
62
- # Initialize the model and processor globally to optimize performance
63
- model = Qwen2VLForConditionalGeneration.from_pretrained(
64
- "Qwen/Qwen2-VL-7B-Instruct",
65
- torch_dtype="auto",
66
- device_map="auto"
67
- )
68
-
69
- processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
70
-
71
-
72
- @spaces.GPU
73
- def run_inference(input_imgs, text_input):
74
- results = []
75
-
76
- for image in input_imgs:
77
- # Convert each image to the required format
78
- image_path, width, height = array_to_image_path(image)
79
-
80
- try:
81
- # Prepare messages for each image
82
- messages = [
83
- {
84
- "role": "user",
85
- "content": [
86
- {
87
- "type": "image",
88
- "image": image_path,
89
- "resized_height": height,
90
- "resized_width": width
91
- },
92
- {
93
- "type": "text",
94
- "text": text_input
95
- }
96
- ]
97
- }
98
- ]
99
-
100
- # Prepare inputs for the model
101
- text = processor.apply_chat_template(
102
- messages, tokenize=False, add_generation_prompt=True
103
- )
104
-
105
- image_inputs, video_inputs = process_vision_info(messages)
106
- inputs = processor(
107
- text=[text],
108
- images=image_inputs,
109
- videos=video_inputs,
110
- padding=True,
111
- return_tensors="pt",
112
- )
113
- inputs = inputs.to("cuda")
114
-
115
- # Generate inference output
116
- generated_ids = model.generate(**inputs, max_new_tokens=4096)
117
- generated_ids_trimmed = [
118
- out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
119
- ]
120
- raw_output = processor.batch_decode(
121
- generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=True
122
- )
123
-
124
- results.append(raw_output[0])
125
- print("Processed: " + image)
126
- finally:
127
- # Clean up the temporary image file
128
- os.remove(image_path)
129
-
130
- return results
131
-
132
-
133
- css = """
134
- #output {
135
- height: 500px;
136
- overflow: auto;
137
- border: 1px solid #ccc;
138
- }
139
- """
140
-
141
- with gr.Blocks(css=css) as demo:
142
- gr.Markdown(DESCRIPTION)
143
- with gr.Tab(label="Qwen2-VL-7B Input"):
144
- with gr.Row():
145
- with gr.Column():
146
- input_imgs = gr.Files(file_types=["image"], label="Upload Document Images")
147
- text_input = gr.Textbox(label="Query")
148
- submit_btn = gr.Button(value="Submit", variant="primary")
149
- with gr.Column():
150
- output_text = gr.Textbox(label="Response")
151
-
152
- submit_btn.click(run_inference, [input_imgs, text_input], [output_text])
153
-
154
- demo.queue(api_open=True)
155
- demo.launch(debug=True)