Spaces:
Configuration error
Configuration error
import gradio as gr | |
import spaces | |
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor | |
from qwen_vl_utils import process_vision_info | |
from PIL import Image | |
from datetime import datetime | |
import os | |
# subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
DESCRIPTION = "[Sparrow Qwen2-VL-7B Backend](https://github.com/katanaml/sparrow)" | |
def array_to_image_path(image_filepath, max_width=1250, max_height=1750): | |
if image_filepath is None: | |
raise ValueError("No image provided. Please upload an image before submitting.") | |
# Open the uploaded image using its filepath | |
img = Image.open(image_filepath) | |
# Extract the file extension from the uploaded file | |
input_image_extension = image_filepath.split('.')[-1].lower() # Extract extension from filepath | |
# Set file extension based on the original file, otherwise default to PNG | |
if input_image_extension in ['jpg', 'jpeg', 'png']: | |
file_extension = input_image_extension | |
else: | |
file_extension = 'png' # Default to PNG if extension is unavailable or invalid | |
# Get the current dimensions of the image | |
width, height = img.size | |
# Initialize new dimensions to current size | |
new_width, new_height = width, height | |
# Check if the image exceeds the maximum dimensions | |
if width > max_width or height > max_height: | |
# Calculate the new size, maintaining the aspect ratio | |
aspect_ratio = width / height | |
if width > max_width: | |
new_width = max_width | |
new_height = int(new_width / aspect_ratio) | |
if new_height > max_height: | |
new_height = max_height | |
new_width = int(new_height * aspect_ratio) | |
# Generate a unique filename using timestamp | |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
filename = f"image_{timestamp}.{file_extension}" | |
# Save the image | |
img.save(filename) | |
# Get the full path of the saved image | |
full_path = os.path.abspath(filename) | |
return full_path, new_width, new_height | |
# Initialize the model and processor globally to optimize performance | |
model = Qwen2VLForConditionalGeneration.from_pretrained( | |
"Qwen/Qwen2-VL-7B-Instruct", | |
torch_dtype="auto", | |
device_map="auto" | |
) | |
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct") | |
def run_inference(input_imgs, text_input): | |
results = [] | |
for image in input_imgs: | |
# Convert each image to the required format | |
image_path, width, height = array_to_image_path(image) | |
try: | |
# Prepare messages for each image | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
{ | |
"type": "image", | |
"image": image_path, | |
"resized_height": height, | |
"resized_width": width | |
}, | |
{ | |
"type": "text", | |
"text": text_input | |
} | |
] | |
} | |
] | |
# Prepare inputs for the model | |
text = processor.apply_chat_template( | |
messages, tokenize=False, add_generation_prompt=True | |
) | |
image_inputs, video_inputs = process_vision_info(messages) | |
inputs = processor( | |
text=[text], | |
images=image_inputs, | |
videos=video_inputs, | |
padding=True, | |
return_tensors="pt", | |
) | |
inputs = inputs.to("cuda") | |
# Generate inference output | |
generated_ids = model.generate(**inputs, max_new_tokens=4096) | |
generated_ids_trimmed = [ | |
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) | |
] | |
raw_output = processor.batch_decode( | |
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=True | |
) | |
results.append(raw_output[0]) | |
print("Processed: " + image) | |
finally: | |
# Clean up the temporary image file | |
os.remove(image_path) | |
return results | |
css = """ | |
#output { | |
height: 500px; | |
overflow: auto; | |
border: 1px solid #ccc; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
gr.Markdown(DESCRIPTION) | |
with gr.Tab(label="Qwen2-VL-7B Input"): | |
with gr.Row(): | |
with gr.Column(): | |
input_imgs = gr.Files(file_types=["image"], label="Upload Document Images") | |
text_input = gr.Textbox(label="Query") | |
submit_btn = gr.Button(value="Submit", variant="primary") | |
with gr.Column(): | |
output_text = gr.Textbox(label="Response") | |
submit_btn.click(run_inference, [input_imgs, text_input], [output_text]) | |
demo.queue(api_open=True) | |
demo.launch(debug=True) |