File size: 13,525 Bytes
0063d17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "29a91458",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Using device: cuda\n"
     ]
    }
   ],
   "source": [
    "!python settings.py"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "97c0ec5c",
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "import zipfile\n",
    "import requests\n",
    "import pandas as pd"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "f7b1ed51",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Download the dataset\n",
    "url      = 'https://huggingface.co/datasets/tmnam20/BKAI-Legal-Retrieval/resolve/main/archive.zip'\n",
    "zip_path = 'data/original/archive.zip'\n",
    "\n",
    "response = requests.get(url)\n",
    "with open(zip_path, 'wb') as f:\n",
    "    f.write(response.content)\n",
    "\n",
    "with zipfile.ZipFile(zip_path, 'r') as zip_ref:\n",
    "    zip_ref.extractall('data/original')\n",
    "    \n",
    "os.remove(zip_path)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "4fe0c4f8",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Train split data: 89592\n",
      "Test split data : 29864\n"
     ]
    }
   ],
   "source": [
    "corpus_data = pd.read_csv('data/original/corpus.csv')\n",
    "train_split = pd.read_csv('data/original/train_split.csv')\n",
    "test_split  = pd.read_csv('data/original/val_split.csv')\n",
    "\n",
    "print(f\"Train split data: {len(train_split)}\")\n",
    "print(f\"Test split data : {len(test_split)}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "6e3fbd6e",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>text</th>\n",
       "      <th>cid</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>Thông tư này hướng dẫn tuần tra, canh gác bảo ...</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>1. Hàng năm trước mùa mưa, lũ, Ủy ban nhân dân...</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>Tiêu chuẩn của các thành viên thuộc lực lượng ...</td>\n",
       "      <td>2</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>Nhiệm vụ của lực lượng tuần tra, canh gác đê\\n...</td>\n",
       "      <td>3</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>Phù hiệu của lực lượng tuần tra, canh gác đê\\n...</td>\n",
       "      <td>4</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "                                                text  cid\n",
       "0  Thông tư này hướng dẫn tuần tra, canh gác bảo ...    0\n",
       "1  1. Hàng năm trước mùa mưa, lũ, Ủy ban nhân dân...    1\n",
       "2  Tiêu chuẩn của các thành viên thuộc lực lượng ...    2\n",
       "3  Nhiệm vụ của lực lượng tuần tra, canh gác đê\\n...    3\n",
       "4  Phù hiệu của lực lượng tuần tra, canh gác đê\\n...    4"
      ]
     },
     "execution_count": 7,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "corpus_data.head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "3d32d13a",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>question</th>\n",
       "      <th>context</th>\n",
       "      <th>cid</th>\n",
       "      <th>qid</th>\n",
       "      <th>context_list</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>Liên đoàn Luật sư Việt Nam là tổ chức xã hội –...</td>\n",
       "      <td>['“Điều 2. Địa vị pháp lý của Liên đoàn Luật s...</td>\n",
       "      <td>[142820]</td>\n",
       "      <td>72600</td>\n",
       "      <td>[“Điều 2. Địa vị pháp lý của Liên đoàn Luật sư...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>Tên hợp tác xã bị rơi vào trường hợp cấm thì c...</td>\n",
       "      <td>['Tên hợp tác xã, liên hiệp hợp tác xã\\n1. Tên...</td>\n",
       "      <td>[27817, 72117]</td>\n",
       "      <td>147562</td>\n",
       "      <td>[\"Điều 7. Tên hợp tác xã, liên hiệp hợp tác xã...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>Tài xế lái xe ô tô khách 50 chỗ ngồi bao lâu t...</td>\n",
       "      <td>['\"1. Sử dụng lái xe bảo đảm sức khỏe theo tiê...</td>\n",
       "      <td>[33215, 56201]</td>\n",
       "      <td>142107</td>\n",
       "      <td>[\"1. Sử dụng lái xe bảo đảm sức khỏe theo tiêu...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>Các bước chuẩn bị thủ thuật bó bột Cravate sẽ ...</td>\n",
       "      <td>['BỘT CRAVATE\\n...\\nIV. CHUẨN BỊ\\n1. Người thự...</td>\n",
       "      <td>[148158]</td>\n",
       "      <td>77353</td>\n",
       "      <td>[BỘT CRAVATE\\n...\\nIV. CHUẨN BỊ\\n1. Người thực...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>Viên chức Hộ sinh hạng 4 có những nhiệm vụ gì ...</td>\n",
       "      <td>['Hộ sinh hạng IV - Mã số: V.08.06.16\\n1. Nhiệ...</td>\n",
       "      <td>[188132]</td>\n",
       "      <td>113090</td>\n",
       "      <td>[Hộ sinh hạng IV - Mã số: V.08.06.16\\n1. Nhiệm...</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "                                            question  \\\n",
       "0  Liên đoàn Luật sư Việt Nam là tổ chức xã hội –...   \n",
       "1  Tên hợp tác xã bị rơi vào trường hợp cấm thì c...   \n",
       "2  Tài xế lái xe ô tô khách 50 chỗ ngồi bao lâu t...   \n",
       "3  Các bước chuẩn bị thủ thuật bó bột Cravate sẽ ...   \n",
       "4  Viên chức Hộ sinh hạng 4 có những nhiệm vụ gì ...   \n",
       "\n",
       "                                             context             cid     qid  \\\n",
       "0  ['“Điều 2. Địa vị pháp lý của Liên đoàn Luật s...        [142820]   72600   \n",
       "1  ['Tên hợp tác xã, liên hiệp hợp tác xã\\n1. Tên...  [27817, 72117]  147562   \n",
       "2  ['\"1. Sử dụng lái xe bảo đảm sức khỏe theo tiê...  [33215, 56201]  142107   \n",
       "3  ['BỘT CRAVATE\\n...\\nIV. CHUẨN BỊ\\n1. Người thự...        [148158]   77353   \n",
       "4  ['Hộ sinh hạng IV - Mã số: V.08.06.16\\n1. Nhiệ...        [188132]  113090   \n",
       "\n",
       "                                        context_list  \n",
       "0  [“Điều 2. Địa vị pháp lý của Liên đoàn Luật sư...  \n",
       "1  [\"Điều 7. Tên hợp tác xã, liên hiệp hợp tác xã...  \n",
       "2  [\"1. Sử dụng lái xe bảo đảm sức khỏe theo tiêu...  \n",
       "3  [BỘT CRAVATE\\n...\\nIV. CHUẨN BỊ\\n1. Người thực...  \n",
       "4  [Hộ sinh hạng IV - Mã số: V.08.06.16\\n1. Nhiệm...  "
      ]
     },
     "execution_count": 8,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# 'cid' column: '[1 2 3]'\n",
    "train_split['cid'] = train_split['cid'].apply(lambda x: [int(i) for i in x[1:-1].split()])\n",
    "test_split['cid']  = test_split['cid'].apply(lambda x: [int(i) for i in x[1:-1].split()])\n",
    "\n",
    "\n",
    "# Mapping from corpus \n",
    "mapping = dict(zip(corpus_data['cid'], corpus_data['text']))\n",
    "\n",
    "def get_context_list(cid_list):\n",
    "    return [mapping[cid] for cid in cid_list if cid in mapping]\n",
    "\n",
    "train_split['context_list'] = train_split['cid'].apply(get_context_list)\n",
    "test_split['context_list']  = test_split['cid'].apply(get_context_list)\n",
    "\n",
    "train_split.head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "e0450414",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "430 99 331\n",
      "question <class 'str'>\n",
      "context <class 'str'>\n",
      "cid <class 'list'>\n",
      "qid <class 'numpy.int64'>\n",
      "context_list <class 'list'>\n"
     ]
    }
   ],
   "source": [
    "# Debug\n",
    "print(\n",
    "    len(train_split[train_split['context_list'].apply(len) != train_split['cid'].apply(len)]),\n",
    "    \n",
    "    len(\n",
    "        train_split[\n",
    "            (train_split['context_list'].apply(len) != train_split['cid'].apply(len)) &\n",
    "            (train_split['context_list'].apply(len) != 0)\n",
    "        ]\n",
    "    ),\n",
    "    \n",
    "    len(\n",
    "        train_split[\n",
    "            (train_split['context_list'].apply(len) != train_split['cid'].apply(len)) &\n",
    "            (train_split['context_list'].apply(len) == 0)\n",
    "        ]\n",
    "    )\n",
    ")\n",
    "\n",
    "for col in train_split.columns:\n",
    "    print(col, type(train_split[col][0]))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "fd1eb4a2",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Drop invalid data\n",
    "train_data = train_split.loc[\n",
    "    ~(train_split['context_list'].apply(len) != train_split['cid'].apply(len)), \n",
    "    ['question', 'context_list', 'qid', 'cid']\n",
    "]\n",
    "\n",
    "test_data = test_split.loc[\n",
    "    ~(test_split['context_list'].apply(len) != test_split['cid'].apply(len)), \n",
    "    ['question', 'context_list', 'qid', 'cid']\n",
    "]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "3661c9cb",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Train data saved: 89162\n",
      "Test data saved : 29723\n"
     ]
    }
   ],
   "source": [
    "# Save the processed data to parquet files\n",
    "corpus_data.to_parquet('data/processed/corpus_data.parquet', index=False)\n",
    "train_data.to_parquet('data/processed/train_data.parquet', index=False)\n",
    "test_data.to_parquet('data/processed/test_data.parquet', index=False)\n",
    "\n",
    "print(f\"Train data saved: {len(train_data)}\")\n",
    "print(f\"Test data saved : {len(test_data)}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "6382a715",
   "metadata": {},
   "outputs": [],
   "source": [
    "# # Get demo data\n",
    "# os.makedirs('data/demo', exist_ok=True)\n",
    "\n",
    "# demo_corpus_data = corpus_data.sample(10, random_state=42).reset_index(drop=True)\n",
    "# demo_train_data  = train_data.sample(10, random_state=42).reset_index(drop=True)\n",
    "# demo_test_data   = test_data.sample(10, random_state=42).reset_index(drop=True)\n",
    "\n",
    "# demo_corpus_data.to_csv('data/demo/demo_corpus_data.csv', index=False)\n",
    "# demo_train_data.to_csv('data/demo/demo_train_data.csv', index=False)\n",
    "# demo_test_data.to_csv('data/demo/demo_test_data.csv', index=False)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "legal_doc_retrieval",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}