import gradio as gr from inference import run_forecast from data_fetcher import download_era5 import os def forecast_cyclone(date): input_path = f"{date}.nc" download_era5(date, input_path) output = run_forecast(input_path) # Do post-processing here (plot wind, detect cyclone) fig_path = "forecast.png" output["t2m"].isel(time=0).plot() # example temp plot import matplotlib.pyplot as plt plt.savefig(fig_path) return fig_path gr.Interface( fn=forecast_cyclone, inputs=["text"], outputs="image", title="Cyclone Forecast (AIFS Model)", description="Select date (YYYY-MM-DD) to generate forecast for India" ).launch()