Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,139 +1,9 @@
|
|
| 1 |
-
import
|
|
|
|
| 2 |
|
| 3 |
-
from
|
| 4 |
-
from sd_models import SD_model
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
from diffusers import StableDiffusionXLImg2ImgPipeline
|
| 11 |
-
import time
|
| 12 |
-
import copy
|
| 13 |
-
import numpy as np
|
| 14 |
-
|
| 15 |
-
pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained(
|
| 16 |
-
"stabilityai/stable-diffusion-xl-refiner-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
|
| 17 |
-
)
|
| 18 |
-
pipe = pipe.to("cuda")
|
| 19 |
-
|
| 20 |
-
global model
|
| 21 |
-
global base_model
|
| 22 |
-
global img
|
| 23 |
-
|
| 24 |
-
def set_model(model_id):
|
| 25 |
-
global model
|
| 26 |
-
if model_id == "InstaFlow-0.9B":
|
| 27 |
-
model = RF_model("./instaflow_09b.pt")
|
| 28 |
-
else:
|
| 29 |
-
raise NotImplementedError
|
| 30 |
-
print('Finished Loading Model!')
|
| 31 |
-
|
| 32 |
-
def set_base_model(model_id):
|
| 33 |
-
global base_model
|
| 34 |
-
if model_id == "runwayml/stable-diffusion-v1-5":
|
| 35 |
-
base_model = SD_model("runwayml/stable-diffusion-v1-5")
|
| 36 |
-
else:
|
| 37 |
-
raise NotImplementedError
|
| 38 |
-
print('Finished Loading Base Model!')
|
| 39 |
-
|
| 40 |
-
def set_new_latent_and_generate_new_image(seed, prompt, num_inference_steps=1, guidance_scale=0.0):
|
| 41 |
-
print('Generate with input seed')
|
| 42 |
-
global model
|
| 43 |
-
global img
|
| 44 |
-
negative_prompt=""
|
| 45 |
-
seed = int(seed)
|
| 46 |
-
num_inference_steps = int(num_inference_steps)
|
| 47 |
-
guidance_scale = float(guidance_scale)
|
| 48 |
-
print(seed, num_inference_steps, guidance_scale)
|
| 49 |
-
|
| 50 |
-
t_s = time.time()
|
| 51 |
-
new_image = model.set_new_latent_and_generate_new_image(int(seed), prompt, negative_prompt, int(num_inference_steps), guidance_scale)
|
| 52 |
-
inf_time = time.time() - t_s
|
| 53 |
-
|
| 54 |
-
img = copy.copy(new_image[0])
|
| 55 |
-
|
| 56 |
-
return new_image[0], inf_time
|
| 57 |
-
|
| 58 |
-
def set_new_latent_and_generate_new_image_with_base_model(seed, prompt, num_inference_steps=1, guidance_scale=0.0):
|
| 59 |
-
print('Generate with input seed')
|
| 60 |
-
global base_model
|
| 61 |
-
negative_prompt=""
|
| 62 |
-
seed = int(seed)
|
| 63 |
-
num_inference_steps = int(num_inference_steps)
|
| 64 |
-
guidance_scale = float(guidance_scale)
|
| 65 |
-
print(seed, num_inference_steps, guidance_scale)
|
| 66 |
-
|
| 67 |
-
t_s = time.time()
|
| 68 |
-
new_image = base_model.set_new_latent_and_generate_new_image(int(seed), prompt, negative_prompt, int(num_inference_steps), guidance_scale)
|
| 69 |
-
inf_time = time.time() - t_s
|
| 70 |
-
|
| 71 |
-
return new_image[0], inf_time
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
def refine_image_512(prompt):
|
| 75 |
-
print('Refine with SDXL-Refiner (512)')
|
| 76 |
-
global img
|
| 77 |
-
|
| 78 |
-
t_s = time.time()
|
| 79 |
-
img = torch.tensor(img).unsqueeze(0).permute(0, 3, 1, 2)
|
| 80 |
-
img = img.permute(0, 2, 3, 1).squeeze(0).cpu().numpy()
|
| 81 |
-
new_image = pipe(prompt, image=img).images[0]
|
| 82 |
-
print('time consumption:', time.time() - t_s)
|
| 83 |
-
new_image = np.array(new_image) * 1.0 / 255.
|
| 84 |
-
|
| 85 |
-
img = new_image
|
| 86 |
-
|
| 87 |
-
return new_image
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
set_model('InstaFlow-0.9B')
|
| 91 |
-
set_base_model("runwayml/stable-diffusion-v1-5")
|
| 92 |
-
|
| 93 |
-
with gr.Blocks() as gradio_gui:
|
| 94 |
-
gr.Markdown(
|
| 95 |
-
"""
|
| 96 |
-
# InstaFlow! One-Step Stable Diffusion with Rectified Flow
|
| 97 |
-
## This Huggingface Space provides a demo of one-step InstaFlow-0.9B and measures the inference time.
|
| 98 |
-
## For fair comparison, Stable Diffusion 1.5 is shown in parallel, running on the same GPU.
|
| 99 |
-
##
|
| 100 |
-
""")
|
| 101 |
-
gr.Markdown("Set Input Seed and Text Prompts Here")
|
| 102 |
-
with gr.Row():
|
| 103 |
-
with gr.Column(scale=0.4):
|
| 104 |
-
seed_input = gr.Textbox(value='101098274', label="Random Seed")
|
| 105 |
-
with gr.Column(scale=0.4):
|
| 106 |
-
prompt_input = gr.Textbox(value='A high-resolution photograph of a waterfall in autumn; muted tone', label="Prompt")
|
| 107 |
-
|
| 108 |
-
with gr.Row():
|
| 109 |
-
with gr.Column(scale=0.4):
|
| 110 |
-
with gr.Group():
|
| 111 |
-
gr.Markdown("Generation from InstaFlow-0.9B")
|
| 112 |
-
im = gr.Image()
|
| 113 |
-
|
| 114 |
-
gr.Markdown("Model ID: One-Step InstaFlow-0.9B")
|
| 115 |
-
inference_time_output = gr.Textbox(value='0.0', label='Inference Time with One-Step InstaFlow (Second)')
|
| 116 |
-
num_inference_steps = gr.Textbox(value='1', label="Number of Inference Steps for InstaFlow (can only be 1)")
|
| 117 |
-
guidance_scale = gr.Textbox(value='0.0', label="Guidance Scale for InstaFlow (can only be 0.0)")
|
| 118 |
-
|
| 119 |
-
new_image_button = gr.Button(value="One-Step Generation with InstaFlow and the Input Seed")
|
| 120 |
-
new_image_button.click(set_new_latent_and_generate_new_image, inputs=[seed_input, prompt_input, num_inference_steps, guidance_scale], outputs=[im, inference_time_output])
|
| 121 |
-
|
| 122 |
-
refine_button_512 = gr.Button(value="Refine One-Step Generation with SDXL Refiner (Resolution: 512)")
|
| 123 |
-
refine_button_512.click(refine_image_512, inputs=[prompt_input], outputs=[im])
|
| 124 |
-
|
| 125 |
-
with gr.Column(scale=0.4):
|
| 126 |
-
with gr.Group():
|
| 127 |
-
gr.Markdown("Generation from Stable Diffusion 1.5")
|
| 128 |
-
im_base = gr.Image()
|
| 129 |
-
|
| 130 |
-
gr.Markdown("Model ID: Multi-Step Stable Diffusion 1.5")
|
| 131 |
-
base_model_inference_time_output = gr.Textbox(value='0.0', label='Inference Time with Multi-Step Stable Diffusion (Second)')
|
| 132 |
-
|
| 133 |
-
base_num_inference_steps = gr.Textbox(value='25', label="Number of Inference Steps for Stable Diffusion")
|
| 134 |
-
base_guidance_scale = gr.Textbox(value='5.0', label="Guidance Scale for Stable Diffusion")
|
| 135 |
-
|
| 136 |
-
base_new_image_button = gr.Button(value="Multi-Step Generation with Stable Diffusion and the Input Seed")
|
| 137 |
-
base_new_image_button.click(set_new_latent_and_generate_new_image_with_base_model, inputs=[seed_input, prompt_input, base_num_inference_steps, base_guidance_scale], outputs=[im_base, base_model_inference_time_output])
|
| 138 |
-
|
| 139 |
-
gradio_gui.launch()
|
|
|
|
| 1 |
+
import shlex
|
| 2 |
+
import subprocess
|
| 3 |
|
| 4 |
+
from huggingface_hub import HfApi
|
|
|
|
| 5 |
|
| 6 |
+
api = HfApi()
|
| 7 |
+
api.snapshot_download(repo_id="XCLiu/InstaFlow_hidden", repo_type="space", local_dir=".")
|
| 8 |
+
subprocess.run(shlex.split("pip install -r requirements.txt"))
|
| 9 |
+
subprocess.run(shlex.split("python app.py"))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|