import streamlit as st
from annotated_text import annotated_text
from refined.inference.processor import Refined
import requests
import json
import spacy
import spacy.cli
import warnings
import logging

# Suppress torch warnings
warnings.filterwarnings("ignore", message=".*torch.classes.*")
warnings.filterwarnings("ignore", message=".*__path__._path.*")

# Set logging level to reduce noise
logging.getLogger("torch").setLevel(logging.ERROR)
logging.getLogger("transformers").setLevel(logging.ERROR)

# Page config
st.set_page_config(
    page_title="Entity Linking by WordLift",
    page_icon="fav-ico.png",
    layout="wide",
    initial_sidebar_state="collapsed",
    menu_items={
        'Get Help': 'https://wordlift.io/book-a-demo/',
        'About': "# This is a demo app for NEL/NED/NER and SEO"
    }
)

# Sidebar
st.sidebar.image("logo-wordlift.png")
language_options = {"English", "English - spaCy", "German"}
selected_language = st.sidebar.selectbox("Select the Language", list(language_options), index=0)

# Based on selected language, configure model, entity set, and citation options
if selected_language == "German" or selected_language == "English - spaCy":
    selected_model_name = None
    selected_entity_set = None

    entity_fishing_citation = """
    @misc{entity-fishing,
    title = {entity-fishing},
    publisher = {GitHub},
    year = {2016--2023},
    archivePrefix = {swh},
    eprint = {1:dir:cb0ba3379413db12b0018b7c3af8d0d2d864139c}
    }
    """

    with st.sidebar.expander('Citations'):
        st.markdown(entity_fishing_citation)

else:
    model_options = ["aida_model", "wikipedia_model_with_numbers"]
    entity_set_options = ["wikidata", "wikipedia"]

    selected_model_name = st.sidebar.selectbox("Select the Model", model_options)
    selected_entity_set = st.sidebar.selectbox("Select the Entity Set", entity_set_options)

    refined_citation = """
    @inproceedings{ayoola-etal-2022-refined,
    title = "{R}e{F}in{ED}: An Efficient Zero-shot-capable Approach to End-to-End Entity Linking",
    author = "Tom Ayoola, Shubhi Tyagi, Joseph Fisher, Christos Christodoulopoulos, Andrea Pierleoni",
    booktitle = "NAACL",
    year = "2022"
    }
    """

    with st.sidebar.expander('Citations'):
        st.markdown(refined_citation)

@st.cache_resource  # 👈 Add the caching decorator
def load_model(selected_language, model_name=None, entity_set=None):
    # Suppress warnings during model loading
    with warnings.catch_warnings():
        warnings.simplefilter("ignore")
        
        try:
            if selected_language == "German":
                # Download and load the German-specific model
                try:
                    nlp_model_de = spacy.load("de_core_news_lg")
                except OSError:
                    st.info("Downloading German language model... This may take a moment.")
                    spacy.cli.download("de_core_news_lg")
                    nlp_model_de = spacy.load("de_core_news_lg")
                
                # Check if entityfishing component is available
                if "entityfishing" not in nlp_model_de.pipe_names:
                    try:
                        nlp_model_de.add_pipe("entityfishing")
                    except Exception as e:
                        st.warning(f"Entity-fishing not available, using basic NER only: {e}")
                        # Return model without entityfishing for basic NER
                        return nlp_model_de
                
                return nlp_model_de
                
            elif selected_language == "English - spaCy":
                # Download and load English-specific model
                try:
                    nlp_model_en = spacy.load("en_core_web_sm")
                except OSError:
                    st.info("Downloading English language model... This may take a moment.")
                    spacy.cli.download("en_core_web_sm")
                    nlp_model_en = spacy.load("en_core_web_sm")
                
                # Check if entityfishing component is available
                if "entityfishing" not in nlp_model_en.pipe_names:
                    try:
                        nlp_model_en.add_pipe("entityfishing")
                    except Exception as e:
                        st.warning(f"Entity-fishing not available, using basic NER only: {e}")
                        # Return model without entityfishing for basic NER
                        return nlp_model_en

                return nlp_model_en    
            else:
                # Load the pretrained model for other languages
                refined_model = Refined.from_pretrained(model_name=model_name, entity_set=entity_set)
                return refined_model
                
        except Exception as e:
            st.error(f"Error loading model: {e}")
            return None

# Use the cached model
model = load_model(selected_language, selected_model_name, selected_entity_set)

# Helper functions
def get_wikidata_id(entity_string):
    entity_list = entity_string.split("=")
    entity_id = str(entity_list[1])
    entity_link = "http://www.wikidata.org/entity/" + entity_id
    return {"id": entity_id, "link": entity_link}

def get_entity_data(entity_link):
    try:
        # Format the entity_link
        formatted_link = entity_link.replace("http://", "http/")
        response = requests.get(f'https://api.wordlift.io/id/{formatted_link}')
        return response.json()
    except Exception as e:
        print(f"Exception when fetching data for entity: {entity_link}. Exception: {e}")
        return None

# Create the form
with st.form(key='my_form'):
    text_input = st.text_area(label='Enter a sentence')
    submit_button = st.form_submit_button(label='Analyze')

# Initialization
entities_map = {}
entities_data = {}

if text_input and model is not None:
    try:
        if selected_language in ["German", "English - spaCy"]:
            # Process the text with error handling
            doc = model(text_input)
            
            # Fixed the syntax error: ent._.kb_qid instead of ent..kb_qid
            entities = []
            for ent in doc.ents:
                try:
                    # Check if the custom attributes exist
                    kb_qid = getattr(ent._, 'kb_qid', None) if hasattr(ent, '_') else None
                    url_wikidata = getattr(ent._, 'url_wikidata', None) if hasattr(ent, '_') else None
                    entities.append((ent.text, ent.label_, kb_qid, url_wikidata))
                except AttributeError as e:
                    # If the entityfishing attributes don't exist, use basic entity info
                    entities.append((ent.text, ent.label_, None, None))
                    
            for entity in entities:
                entity_string, entity_type, wikidata_id, wikidata_url = entity
                if wikidata_url:
                    # Ensure correct format for the German and English model
                    formatted_wikidata_url = wikidata_url.replace("https://www.wikidata.org/wiki/", "http://www.wikidata.org/entity/")
                    entities_map[entity_string] = {"id": wikidata_id, "link": formatted_wikidata_url}
                    entity_data = get_entity_data(formatted_wikidata_url)

                    if entity_data is not None:
                        entities_data[entity_string] = entity_data
        else:
            entities = model.process_text(text_input)

            for entity in entities:
                single_entity_list = str(entity).strip('][').replace("\'", "").split(', ')
                if len(single_entity_list) >= 2 and "wikidata" in single_entity_list[1]:
                    entities_map[single_entity_list[0].strip()] = get_wikidata_id(single_entity_list[1])
                    entity_data = get_entity_data(entities_map[single_entity_list[0].strip()]["link"])
                    if entity_data is not None:
                        entities_data[single_entity_list[0].strip()] = entity_data

    except Exception as e:
        st.error(f"Error processing text: {e}")
        if "entityfishing" in str(e).lower():
            st.error("This appears to be an entity-fishing related error. Please ensure:")
            st.error("1. Entity-fishing service is running")
            st.error("2. spacyfishing package is properly installed")
            st.error("3. Network connectivity to entity-fishing service")

# Combine entity information
combined_entity_info_dictionary = dict([(k, [entities_map[k], entities_data[k] if k in entities_data else None]) for k in entities_map])

if submit_button and entities_map:
    # Prepare a list to hold the final output
    final_text = []

    # JSON-LD data
    json_ld_data = {
            "@context": "https://schema.org",
            "@type": "WebPage",
            "mentions": []
        }

   # Replace each entity in the text with its annotated version
    for entity_string, entity_info in entities_map.items():
        # Check if the entity has a valid Wikidata link
        if entity_info["link"] is None or entity_info["link"] == "None":
            continue  # skip this entity
        
        entity_data = entities_data.get(entity_string, None)
        entity_type = None
        if entity_data is not None:
            entity_type = entity_data.get("@type", None)

        # Use different colors based on the entity's type
        color = "#8ef"  # Default color
        if entity_type == "Place":
            color = "#8AC7DB"
        elif entity_type == "Organization":
            color = "#ADD8E6"
        elif entity_type == "Person":
            color = "#67B7D1"
        elif entity_type == "Product":
            color = "#2ea3f2"
        elif entity_type == "CreativeWork":
            color = "#00BFFF"
        elif entity_type == "Event":
            color = "#1E90FF"

        entity_annotation = (entity_string, entity_info["id"], color)
        text_input = text_input.replace(entity_string, f'{{{str(entity_annotation)}}}', 1)
            
        # Add the entity to JSON-LD data
        entity_json_ld = combined_entity_info_dictionary[entity_string][1]
        if entity_json_ld and entity_json_ld.get("link") != "None":
            json_ld_data["mentions"].append(entity_json_ld)

    # Split the modified text_input into a list
    text_list = text_input.split("{")
    
    for item in text_list:
        if "}" in item:
            item_list = item.split("}")
            try:
                final_text.append(eval(item_list[0]))
            except:
                final_text.append(item_list[0])
            if len(item_list) > 1 and len(item_list[1]) > 0:
                final_text.append(item_list[1])
        else:
            final_text.append(item)

    # Pass the final_text to the annotated_text function
    annotated_text(*final_text)
    
    with st.expander("See annotations"):
        st.write(combined_entity_info_dictionary)

    with st.expander("Here is the final JSON-LD"):
        st.json(json_ld_data)  # Output JSON-LD
elif submit_button and not entities_map:
    st.warning("No entities found in the text. Please try with different text or check if the model is working correctly.")