Spaces:
Running
Running
File size: 11,236 Bytes
bbcf937 59c3f8c bbcf937 44b938c 24d58c0 117cafd b517063 3c82a02 117cafd cb76a4b 0bec8b3 542aecd d24252f 4ac935a bbcf937 8e7625e d24252f e8957f4 d24252f e8957f4 d24252f e8957f4 8e7625e e8957f4 8e7625e 4ac935a 8e7625e 4ac935a e8957f4 4ac935a 8e7625e 42d1bed e8957f4 9494755 3c82a02 fdaf3eb e8957f4 fdaf3eb e8957f4 fdaf3eb 3c82a02 fdaf3eb dedd775 320ee5a 9494755 bbcf937 320ee5a e8957f4 b126447 c9574f5 e8957f4 44b938c b126447 9d9274e 44b938c e8957f4 44b938c e8957f4 bbcf937 e8957f4 c9574f5 bbcf937 dd4ee36 e8957f4 7d64ce5 e8957f4 7d64ce5 e8957f4 7d64ce5 e8957f4 7d64ce5 e8957f4 7d64ce5 e8957f4 7d64ce5 e8957f4 31c00d2 e8957f4 3c82a02 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
import streamlit as st
from annotated_text import annotated_text
from refined.inference.processor import Refined
import requests
import json
import spacy
import spacy.cli
import warnings
import logging
# Suppress torch warnings
warnings.filterwarnings("ignore", message=".*torch.classes.*")
warnings.filterwarnings("ignore", message=".*__path__._path.*")
# Set logging level to reduce noise
logging.getLogger("torch").setLevel(logging.ERROR)
logging.getLogger("transformers").setLevel(logging.ERROR)
# Page config
st.set_page_config(
page_title="Entity Linking by WordLift",
page_icon="fav-ico.png",
layout="wide",
initial_sidebar_state="collapsed",
menu_items={
'Get Help': 'https://wordlift.io/book-a-demo/',
'About': "# This is a demo app for NEL/NED/NER and SEO"
}
)
# Sidebar
st.sidebar.image("logo-wordlift.png")
language_options = {"English", "English - spaCy", "German"}
selected_language = st.sidebar.selectbox("Select the Language", list(language_options), index=0)
# Based on selected language, configure model, entity set, and citation options
if selected_language == "German" or selected_language == "English - spaCy":
selected_model_name = None
selected_entity_set = None
entity_fishing_citation = """
@misc{entity-fishing,
title = {entity-fishing},
publisher = {GitHub},
year = {2016--2023},
archivePrefix = {swh},
eprint = {1:dir:cb0ba3379413db12b0018b7c3af8d0d2d864139c}
}
"""
with st.sidebar.expander('Citations'):
st.markdown(entity_fishing_citation)
else:
model_options = ["aida_model", "wikipedia_model_with_numbers"]
entity_set_options = ["wikidata", "wikipedia"]
selected_model_name = st.sidebar.selectbox("Select the Model", model_options)
selected_entity_set = st.sidebar.selectbox("Select the Entity Set", entity_set_options)
refined_citation = """
@inproceedings{ayoola-etal-2022-refined,
title = "{R}e{F}in{ED}: An Efficient Zero-shot-capable Approach to End-to-End Entity Linking",
author = "Tom Ayoola, Shubhi Tyagi, Joseph Fisher, Christos Christodoulopoulos, Andrea Pierleoni",
booktitle = "NAACL",
year = "2022"
}
"""
with st.sidebar.expander('Citations'):
st.markdown(refined_citation)
@st.cache_resource # 👈 Add the caching decorator
def load_model(selected_language, model_name=None, entity_set=None):
# Suppress warnings during model loading
with warnings.catch_warnings():
warnings.simplefilter("ignore")
try:
if selected_language == "German":
# Download and load the German-specific model
try:
nlp_model_de = spacy.load("de_core_news_lg")
except OSError:
st.info("Downloading German language model... This may take a moment.")
spacy.cli.download("de_core_news_lg")
nlp_model_de = spacy.load("de_core_news_lg")
# Check if entityfishing component is available
if "entityfishing" not in nlp_model_de.pipe_names:
try:
nlp_model_de.add_pipe("entityfishing")
except Exception as e:
st.warning(f"Entity-fishing not available, using basic NER only: {e}")
# Return model without entityfishing for basic NER
return nlp_model_de
return nlp_model_de
elif selected_language == "English - spaCy":
# Download and load English-specific model
try:
nlp_model_en = spacy.load("en_core_web_sm")
except OSError:
st.info("Downloading English language model... This may take a moment.")
spacy.cli.download("en_core_web_sm")
nlp_model_en = spacy.load("en_core_web_sm")
# Check if entityfishing component is available
if "entityfishing" not in nlp_model_en.pipe_names:
try:
nlp_model_en.add_pipe("entityfishing")
except Exception as e:
st.warning(f"Entity-fishing not available, using basic NER only: {e}")
# Return model without entityfishing for basic NER
return nlp_model_en
return nlp_model_en
else:
# Load the pretrained model for other languages
refined_model = Refined.from_pretrained(model_name=model_name, entity_set=entity_set)
return refined_model
except Exception as e:
st.error(f"Error loading model: {e}")
return None
# Use the cached model
model = load_model(selected_language, selected_model_name, selected_entity_set)
# Helper functions
def get_wikidata_id(entity_string):
entity_list = entity_string.split("=")
entity_id = str(entity_list[1])
entity_link = "http://www.wikidata.org/entity/" + entity_id
return {"id": entity_id, "link": entity_link}
def get_entity_data(entity_link):
try:
# Format the entity_link
formatted_link = entity_link.replace("http://", "http/")
response = requests.get(f'https://api.wordlift.io/id/{formatted_link}')
return response.json()
except Exception as e:
print(f"Exception when fetching data for entity: {entity_link}. Exception: {e}")
return None
# Create the form
with st.form(key='my_form'):
text_input = st.text_area(label='Enter a sentence')
submit_button = st.form_submit_button(label='Analyze')
# Initialization
entities_map = {}
entities_data = {}
if text_input and model is not None:
try:
if selected_language in ["German", "English - spaCy"]:
# Process the text with error handling
doc = model(text_input)
# Fixed the syntax error: ent._.kb_qid instead of ent..kb_qid
entities = []
for ent in doc.ents:
try:
# Check if the custom attributes exist
kb_qid = getattr(ent._, 'kb_qid', None) if hasattr(ent, '_') else None
url_wikidata = getattr(ent._, 'url_wikidata', None) if hasattr(ent, '_') else None
entities.append((ent.text, ent.label_, kb_qid, url_wikidata))
except AttributeError as e:
# If the entityfishing attributes don't exist, use basic entity info
entities.append((ent.text, ent.label_, None, None))
for entity in entities:
entity_string, entity_type, wikidata_id, wikidata_url = entity
if wikidata_url:
# Ensure correct format for the German and English model
formatted_wikidata_url = wikidata_url.replace("https://www.wikidata.org/wiki/", "http://www.wikidata.org/entity/")
entities_map[entity_string] = {"id": wikidata_id, "link": formatted_wikidata_url}
entity_data = get_entity_data(formatted_wikidata_url)
if entity_data is not None:
entities_data[entity_string] = entity_data
else:
entities = model.process_text(text_input)
for entity in entities:
single_entity_list = str(entity).strip('][').replace("\'", "").split(', ')
if len(single_entity_list) >= 2 and "wikidata" in single_entity_list[1]:
entities_map[single_entity_list[0].strip()] = get_wikidata_id(single_entity_list[1])
entity_data = get_entity_data(entities_map[single_entity_list[0].strip()]["link"])
if entity_data is not None:
entities_data[single_entity_list[0].strip()] = entity_data
except Exception as e:
st.error(f"Error processing text: {e}")
if "entityfishing" in str(e).lower():
st.error("This appears to be an entity-fishing related error. Please ensure:")
st.error("1. Entity-fishing service is running")
st.error("2. spacyfishing package is properly installed")
st.error("3. Network connectivity to entity-fishing service")
# Combine entity information
combined_entity_info_dictionary = dict([(k, [entities_map[k], entities_data[k] if k in entities_data else None]) for k in entities_map])
if submit_button and entities_map:
# Prepare a list to hold the final output
final_text = []
# JSON-LD data
json_ld_data = {
"@context": "https://schema.org",
"@type": "WebPage",
"mentions": []
}
# Replace each entity in the text with its annotated version
for entity_string, entity_info in entities_map.items():
# Check if the entity has a valid Wikidata link
if entity_info["link"] is None or entity_info["link"] == "None":
continue # skip this entity
entity_data = entities_data.get(entity_string, None)
entity_type = None
if entity_data is not None:
entity_type = entity_data.get("@type", None)
# Use different colors based on the entity's type
color = "#8ef" # Default color
if entity_type == "Place":
color = "#8AC7DB"
elif entity_type == "Organization":
color = "#ADD8E6"
elif entity_type == "Person":
color = "#67B7D1"
elif entity_type == "Product":
color = "#2ea3f2"
elif entity_type == "CreativeWork":
color = "#00BFFF"
elif entity_type == "Event":
color = "#1E90FF"
entity_annotation = (entity_string, entity_info["id"], color)
text_input = text_input.replace(entity_string, f'{{{str(entity_annotation)}}}', 1)
# Add the entity to JSON-LD data
entity_json_ld = combined_entity_info_dictionary[entity_string][1]
if entity_json_ld and entity_json_ld.get("link") != "None":
json_ld_data["mentions"].append(entity_json_ld)
# Split the modified text_input into a list
text_list = text_input.split("{")
for item in text_list:
if "}" in item:
item_list = item.split("}")
try:
final_text.append(eval(item_list[0]))
except:
final_text.append(item_list[0])
if len(item_list) > 1 and len(item_list[1]) > 0:
final_text.append(item_list[1])
else:
final_text.append(item)
# Pass the final_text to the annotated_text function
annotated_text(*final_text)
with st.expander("See annotations"):
st.write(combined_entity_info_dictionary)
with st.expander("Here is the final JSON-LD"):
st.json(json_ld_data) # Output JSON-LD
elif submit_button and not entities_map:
st.warning("No entities found in the text. Please try with different text or check if the model is working correctly.") |