import os import sys sys.path.insert(0, os.path.dirname(os.path.abspath(__file__))) import subprocess subprocess.run('pip install flash-attn==2.7.4.post1 --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) # wan2.2-main/gradio_ti2v.py import gradio as gr import torch from huggingface_hub import snapshot_download from PIL import Image import random import numpy as np import spaces import wan from wan.configs import WAN_CONFIGS, SIZE_CONFIGS, MAX_AREA_CONFIGS, SUPPORTED_SIZES from wan.utils.utils import cache_video # --- 1. Global Setup and Model Loading --- print("Starting Gradio App for Wan 2.2 TI2V-5B...") # Download model snapshots from Hugging Face Hub repo_id = "Wan-AI/Wan2.2-TI2V-5B" print(f"Downloading/loading checkpoints for {repo_id}...") ckpt_dir = snapshot_download(repo_id, local_dir_use_symlinks=False) print(f"Using checkpoints from {ckpt_dir}") # Load the model configuration TASK_NAME = 'ti2v-5B' cfg = WAN_CONFIGS[TASK_NAME] FIXED_FPS = 24 MIN_FRAMES_MODEL = 8 MAX_FRAMES_MODEL = 121 # Instantiate the pipeline in the global scope print("Initializing WanTI2V pipeline...") device = "cuda" if torch.cuda.is_available() else "cpu" device_id = 0 if torch.cuda.is_available() else -1 pipeline = wan.WanTI2V( config=cfg, checkpoint_dir=ckpt_dir, device_id=device_id, rank=0, t5_fsdp=False, dit_fsdp=False, use_sp=False, t5_cpu=False, init_on_cpu=True, convert_model_dtype=True, ) print("Pipeline initialized and ready.") # --- 2. Gradio Inference Function --- @spaces.GPU(duration=80) def generate_video( image, prompt, size, duration_seconds, sampling_steps, guide_scale, shift, seed, progress=gr.Progress(track_tqdm=True) ): """The main function to generate video, called by the Gradio interface.""" if seed == -1: seed = random.randint(0, sys.maxsize) input_image = Image.fromarray(image).convert("RGB") if image is not None else None # Calculate number of frames based on duration num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL) video_tensor = pipeline.generate( input_prompt=prompt, img=input_image, # Pass None for T2V, Image for I2V size=SIZE_CONFIGS[size], max_area=MAX_AREA_CONFIGS[size], frame_num=num_frames, # Use calculated frames instead of cfg.frame_num shift=shift, sample_solver='unipc', sampling_steps=int(sampling_steps), guide_scale=guide_scale, seed=seed, offload_model=True ) # Save the video to a temporary file video_path = cache_video( tensor=video_tensor[None], # Add a batch dimension save_file=None, # cache_video will create a temp file fps=cfg.sample_fps, normalize=True, value_range=(-1, 1) ) return video_path # --- 3. Gradio Interface --- css = ".gradio-container {max-width: 1100px !important} #output_video {height: 500px;} #input_image {height: 500px;}" with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo: gr.Markdown("# Wan 2.2 Text/Image-to-Video Demo (ti2v-5B)") gr.Markdown("Generate a video from a text prompt. Optionally, provide an initial image to guide the generation (Image-to-Video).") with gr.Row(): with gr.Column(scale=2): image_input = gr.Image(type="numpy", label="Input Image (Optional)", elem_id="input_image") prompt_input = gr.Textbox(label="Prompt", value="A beautiful waterfall in a lush jungle, cinematic.", lines=3) duration_input = gr.Slider( minimum=round(MIN_FRAMES_MODEL/FIXED_FPS, 1), maximum=round(MAX_FRAMES_MODEL/FIXED_FPS, 1), step=0.1, value=2.0, label="Duration (seconds)", info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps." ) size_input = gr.Dropdown(label="Output Resolution", choices=list(SUPPORTED_SIZES[TASK_NAME]), value="704*1280") with gr.Column(scale=2): video_output = gr.Video(label="Generated Video", elem_id="output_video") with gr.Accordion("Advanced Settings", open=False): steps_input = gr.Slider(label="Sampling Steps", minimum=10, maximum=70, value=35, step=1) scale_input = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, value=cfg.sample_guide_scale, step=0.1) shift_input = gr.Slider(label="Sample Shift", minimum=1.0, maximum=20.0, value=cfg.sample_shift, step=0.1) seed_input = gr.Number(label="Seed (-1 for random)", value=-1, precision=0) run_button = gr.Button("Generate Video", variant="primary") example_image_path = os.path.join(os.path.dirname(__file__), "examples/i2v_input.JPG") gr.Examples( examples=[ [None, "A cinematic shot of a boat sailing on a calm sea at sunset.", "1280*704", 2.0], [example_image_path, "The cat slowly blinks its eyes.", "704*1280", 1.5], [None, "Drone footage flying over a futuristic city with flying cars.", "1280*704", 3.0], ], inputs=[image_input, prompt_input, size_input, duration_input], outputs=video_output, fn=generate_video, cache_examples=False, ) run_button.click( fn=generate_video, inputs=[image_input, prompt_input, size_input, duration_input, steps_input, scale_input, shift_input, seed_input], outputs=video_output ) if __name__ == "__main__": demo.launch()