import os import pickle import numpy as np import faiss import torch from datasets import load_dataset import evaluate # Import RAG setup and retrieval logic from app.py from app import setup_rag, retrieve def retrieval_recall(dataset, passages, embedder, index, k=20, rerank_k=None, num_samples=100): """ Compute raw Retrieval Recall@k on the first num_samples examples. If rerank_k is set, also apply cross-encoder reranking. """ hits = 0 for ex in dataset.select(range(num_samples)): question = ex["question"] gold_answers = ex["answers"]["text"] # get top-k retrieved contexts if rerank_k: ctxs, _ = retrieve(question, passages, embedder, index, k=k, rerank_k=rerank_k) else: # skip reranking: use top-k directly q_emb = embedder.encode([question], convert_to_numpy=True) distances, idxs = index.search(q_emb, k) ctxs = [passages[i] for i in idxs[0]] # check if any gold span appears if any(any(ans in ctx for ctx in ctxs) for ans in gold_answers): hits += 1 recall = hits / num_samples print(f"Retrieval Recall@{k} (rerank_k={rerank_k}): {recall:.3f} ({hits}/{num_samples})") return recall def retrieval_recall_answerable(dataset, passages, embedder, index, k=20, rerank_k=None, num_samples=100): """ Retrieval Recall@k evaluated only on answerable questions. """ hits, total = 0, 0 for ex in dataset.select(range(num_samples)): if not ex["answers"]["text"]: continue total += 1 question = ex["question"] if rerank_k: ctxs, _ = retrieve(question, passages, embedder, index, k=k, rerank_k=rerank_k) else: q_emb = embedder.encode([question], convert_to_numpy=True) distances, idxs = index.search(q_emb, k) ctxs = [passages[i] for i in idxs[0]] if any(any(ans in ctx for ctx in ctxs) for ans in ex["answers"]["text"]): hits += 1 recall = hits / total if total > 0 else 0.0 print(f"Retrieval Recall@{k} on answerable only (rerank_k={rerank_k}): {recall:.3f} ({hits}/{total})") return recall def qa_eval_answerable(dataset, passages, embedder, reranker, index, qa_pipe, k=20, num_samples=100): """ End-to-end QA EM/F1 on answerable subset using the retrieve_and_answer logic. """ squad_metric = evaluate.load("squad") preds, refs = [], [] for ex in dataset.select(range(num_samples)): if not ex["answers"]["text"]: continue qid = ex["id"] # retrieve and generate answer, _ = retrieve_and_answer(ex["question"], passages, embedder, reranker, index, qa_pipe) preds.append({"id": qid, "prediction_text": answer}) refs.append({"id": qid, "answers": ex["answers"]}) results = squad_metric.compute(predictions=preds, references=refs) print(f"Answerable-only QA EM: {results['exact_match']:.2f}, F1: {results['f1']:.2f}") return results def main(): # Setup RAG components passages, embedder, reranker, index, qa_pipe = setup_rag() # Load SQuAD v2 validation set squad = load_dataset("rajpurkar/squad_v2", split="validation") # Run evaluations retrieval_recall(squad, passages, embedder, index, k=20, rerank_k=5, num_samples=100) retrieval_recall_answerable(squad, passages, embedder, index, k=20, rerank_k=5, num_samples=100) qa_eval_answerable(squad, passages, embedder, reranker, index, qa_pipe, k=20, num_samples=100) if __name__ == "__main__": main()