Qwen3 / app.py
openfree's picture
Update app.py
c5529eb verified
raw
history blame
9.36 kB
import os
import time
import gc
import threading
from datetime import datetime
import gradio as gr
import torch
from transformers import pipeline, TextIteratorStreamer
import spaces # Import spaces early to enable ZeroGPU support
# ------------------------------
# Global Cancellation Event
# ------------------------------
cancel_event = threading.Event()
# ------------------------------
# Qwen3 Model Definitions
# ------------------------------
MODELS = {
"Qwen3-8B": {"repo_id": "Qwen/Qwen3-8B", "description": "Qwen3-8B - Largest model with highest capabilities"},
"Qwen3-4B": {"repo_id": "Qwen/Qwen3-4B", "description": "Qwen3-4B - Good balance of performance and efficiency"},
"Qwen3-1.7B": {"repo_id": "Qwen/Qwen3-1.7B", "description": "Qwen3-1.7B - Smaller model for faster responses"},
"Qwen3-0.6B": {"repo_id": "Qwen/Qwen3-0.6B", "description": "Qwen3-0.6B - Ultra-lightweight model"}
}
# Global cache for pipelines to avoid re-loading.
PIPELINES = {}
def load_pipeline(model_name):
"""
Load and cache a transformers pipeline for text generation.
Tries bfloat16, falls back to float16 or float32 if unsupported.
"""
global PIPELINES
if model_name in PIPELINES:
return PIPELINES[model_name]
repo = MODELS[model_name]["repo_id"]
for dtype in (torch.bfloat16, torch.float16, torch.float32):
try:
pipe = pipeline(
task="text-generation",
model=repo,
tokenizer=repo,
trust_remote_code=True,
torch_dtype=dtype,
device_map="auto"
)
PIPELINES[model_name] = pipe
return pipe
except Exception:
continue
# Final fallback
pipe = pipeline(
task="text-generation",
model=repo,
tokenizer=repo,
trust_remote_code=True,
device_map="auto"
)
PIPELINES[model_name] = pipe
return pipe
def format_conversation(history, system_prompt):
"""
Flatten chat history and system prompt into a single string.
"""
prompt = system_prompt.strip() + "\n"
for turn in history:
user_msg, assistant_msg = turn
prompt += "User: " + user_msg.strip() + "\n"
if assistant_msg: # might be None or empty
prompt += "Assistant: " + assistant_msg.strip() + "\n"
if not prompt.strip().endswith("Assistant:"):
prompt += "Assistant: "
return prompt
@spaces.GPU(duration=60)
def chat_response(user_msg, history, system_prompt,
model_name, max_tokens, temperature,
top_k, top_p, repeat_penalty):
"""
Generates streaming chat responses using the standard (user, assistant) format.
"""
cancel_event.clear()
# Add the user message to history
history = history + [[user_msg, None]]
# Format the conversation for the model
prompt = format_conversation(history, system_prompt)
try:
pipe = load_pipeline(model_name)
streamer = TextIteratorStreamer(pipe.tokenizer,
skip_prompt=True,
skip_special_tokens=True)
gen_thread = threading.Thread(
target=pipe,
args=(prompt,),
kwargs={
'max_new_tokens': max_tokens,
'temperature': temperature,
'top_k': top_k,
'top_p': top_p,
'repetition_penalty': repeat_penalty,
'streamer': streamer,
'return_full_text': False
}
)
gen_thread.start()
# Stream the response
assistant_text = ''
for chunk in streamer:
if cancel_event.is_set():
break
assistant_text += chunk
history[-1][1] = assistant_text
yield history
gen_thread.join()
except Exception as e:
history[-1][1] = f"Error: {e}"
yield history
finally:
gc.collect()
def cancel_generation():
cancel_event.set()
return 'Generation cancelled.'
def get_default_system_prompt():
today = datetime.now().strftime('%Y-%m-%d')
return f"""You are Qwen3, a helpful and friendly AI assistant created by Alibaba Cloud.
Today is {today}.
Be concise, accurate, and helpful in your responses."""
# CSS for improved visual style
css = """
.gradio-container {
background-color: #f5f7fb !important;
}
.qwen-header {
background: linear-gradient(90deg, #0099FF, #0066CC);
padding: 20px;
border-radius: 10px;
margin-bottom: 20px;
text-align: center;
color: white;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}
.qwen-container {
border-radius: 10px;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05);
background: white;
padding: 20px;
margin-bottom: 20px;
}
.controls-container {
background: #f0f4fa;
border-radius: 10px;
padding: 15px;
margin-bottom: 15px;
}
.model-select {
border: 2px solid #0099FF !important;
border-radius: 8px !important;
}
.button-primary {
background-color: #0099FF !important;
color: white !important;
}
.button-secondary {
background-color: #6c757d !important;
color: white !important;
}
.footer {
text-align: center;
margin-top: 20px;
font-size: 0.8em;
color: #666;
}
"""
# Function to get just the model name from the dropdown selection
def get_model_name(full_selection):
return full_selection.split(" - ")[0]
# Function to clear chat
def clear_chat():
return [], ""
# Function to handle message submission and clear input
def submit_message(user_input, history, system_prompt, model_name, max_tokens, temp, k, p, rp):
return "", history + [[user_input, None]]
# ------------------------------
# Gradio UI
# ------------------------------
with gr.Blocks(title="Qwen3 Chat", css=css) as demo:
gr.HTML("""
<div class="qwen-header">
<h1>🤖 Qwen3 Chat</h1>
<p>Interact with Alibaba Cloud's Qwen3 language models</p>
</div>
""")
chatbot = gr.Chatbot(height=500)
with gr.Row():
with gr.Column(scale=3):
with gr.Group(elem_classes="qwen-container"):
model_dd = gr.Dropdown(
label="Select Qwen3 Model",
choices=[f"{k} - {v['description']}" for k, v in MODELS.items()],
value=f"{list(MODELS.keys())[0]} - {MODELS[list(MODELS.keys())[0]]['description']}",
elem_classes="model-select"
)
with gr.Group(elem_classes="controls-container"):
gr.Markdown("### ⚙️ Generation Parameters")
sys_prompt = gr.Textbox(label="System Prompt", lines=5, value=get_default_system_prompt())
with gr.Row():
max_tok = gr.Slider(64, 1024, value=512, step=32, label="Max Tokens")
with gr.Row():
temp = gr.Slider(0.1, 2.0, value=0.7, step=0.1, label="Temperature")
p = gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top-P")
with gr.Row():
k = gr.Slider(1, 100, value=40, step=1, label="Top-K")
rp = gr.Slider(1.0, 2.0, value=1.1, step=0.1, label="Repetition Penalty")
with gr.Row():
clr = gr.Button("Clear Chat", elem_classes="button-secondary")
cnl = gr.Button("Cancel Generation", elem_classes="button-secondary")
with gr.Column(scale=7):
with gr.Row():
msg = gr.Textbox(
placeholder="Type your message and press Enter...",
lines=2,
show_label=False
)
send_btn = gr.Button("Send", variant="primary", elem_classes="button-primary")
gr.HTML("""
<div class="footer">
<p>Qwen3 models developed by Alibaba Cloud. Interface powered by Gradio and ZeroGPU.</p>
</div>
""")
# Event handlers
clr.click(fn=clear_chat, outputs=[chatbot, msg])
cnl.click(fn=cancel_generation)
# Handle sending messages and generating responses
msg.submit(
fn=submit_message,
inputs=[msg, chatbot, sys_prompt, model_dd, max_tok, temp, k, p, rp],
outputs=[msg, chatbot]
).then(
fn=lambda history, prompt, model, tok, temp, k, p, rp:
chat_response(
history[-1][0], history[:-1], prompt,
get_model_name(model), tok, temp, k, p, rp
),
inputs=[chatbot, sys_prompt, model_dd, max_tok, temp, k, p, rp],
outputs=chatbot
)
send_btn.click(
fn=submit_message,
inputs=[msg, chatbot, sys_prompt, model_dd, max_tok, temp, k, p, rp],
outputs=[msg, chatbot]
).then(
fn=lambda history, prompt, model, tok, temp, k, p, rp:
chat_response(
history[-1][0], history[:-1], prompt,
get_model_name(model), tok, temp, k, p, rp
),
inputs=[chatbot, sys_prompt, model_dd, max_tok, temp, k, p, rp],
outputs=chatbot
)
if __name__ == "__main__":
demo.launch()