vikvenk commited on
Commit
7b30d5f
·
verified ·
1 Parent(s): 0e52906

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -4
app.py CHANGED
@@ -4,7 +4,6 @@ import shap
4
  import numpy as np
5
  import scipy as sp
6
  import torch
7
- import tensorflow as tf
8
  import transformers
9
  from transformers import pipeline
10
  from transformers import RobertaTokenizer, RobertaModel
@@ -21,7 +20,7 @@ csv.field_size_limit(sys.maxsize)
21
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
22
 
23
  tokenizer = AutoTokenizer.from_pretrained("vikvenk/ADR_Detection")
24
- model = AutoModelForSequenceClassification.from_pretrained("vikvenk/ADR_Detection", from_tf=True).to(device)
25
  # build a pipeline object to do predictions
26
  pred = transformers.pipeline("text-classification", model=model,
27
  tokenizer=tokenizer, return_all_scores=True)
@@ -50,8 +49,8 @@ ner_pipe = pipeline("ner", model=ner_model, tokenizer=ner_tokenizer, aggregation
50
  def adr_predict(x):
51
  encoded_input = tokenizer(x, return_tensors='pt')
52
  output = model(**encoded_input)
53
- scores = output[0][0].detach().numpy()
54
- scores = tf.nn.softmax(scores)
55
 
56
  shap_values = explainer([str(x).lower()])
57
  # # Find the index of the class you want as the default reference (e.g., 'label_1')
 
4
  import numpy as np
5
  import scipy as sp
6
  import torch
 
7
  import transformers
8
  from transformers import pipeline
9
  from transformers import RobertaTokenizer, RobertaModel
 
20
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
21
 
22
  tokenizer = AutoTokenizer.from_pretrained("vikvenk/ADR_Detection")
23
+ model = AutoModelForSequenceClassification.from_pretrained("vikvenk/ADR_Detection").to(device)
24
  # build a pipeline object to do predictions
25
  pred = transformers.pipeline("text-classification", model=model,
26
  tokenizer=tokenizer, return_all_scores=True)
 
49
  def adr_predict(x):
50
  encoded_input = tokenizer(x, return_tensors='pt')
51
  output = model(**encoded_input)
52
+ scores = output[0][0].detach()
53
+ scores = torch.nn.functional.softmax(scores)
54
 
55
  shap_values = explainer([str(x).lower()])
56
  # # Find the index of the class you want as the default reference (e.g., 'label_1')