File size: 7,663 Bytes
3d0e51e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
#!/usr/local/bin/python3

# Author: Pranab Ghosh
# 
# Licensed under the Apache License, Version 2.0 (the "License"); you
# may not use this file except in compliance with the License. You may
# obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0 
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied. See the License for the specific language governing
# permissions and limitations under the License.

# Package imports
import os
import sys
import random
import statistics 
import matplotlib.pyplot as plt 
import argparse
from matumizi.util import *
from matumizi.mlutil import *
from matumizi.daexp import *
from matumizi.sampler import *

NFEAT = 11
NFEAT_EXT = 14

class LoanApprove:
	def __init__(self, numLoans=None):
		self.numLoans = numLoans
		self.marStatus = ["married", "single", "divorced"]
		self.loanTerm = ["7", "15", "30"]
		self.addExtra = False


	def initTwo(self):
		"""
		initialize samplers
		"""
		self.approvDistr = CategoricalRejectSampler(("1", 60), ("0", 40))
		self.featCondDister = {}
		
		#marital status
		key = ("1", 0)
		distr = CategoricalRejectSampler(("married", 100), ("single", 60), ("divorced", 40))
		self.featCondDister[key] = distr
		key = ("0", 0)
		distr = CategoricalRejectSampler(("married", 40), ("single", 100), ("divorced", 40))
		self.featCondDister[key] = distr
	
		
		# num of children
		key = ("1", 1)
		distr = CategoricalRejectSampler(("1", 100), ("2", 90), ("3", 40))
		self.featCondDister[key] = distr
		key = ("0", 1)
		distr = CategoricalRejectSampler(("1", 50), ("2", 70), ("3", 100))
		self.featCondDister[key] = distr

		# education
		key = ("1", 2)
		distr = CategoricalRejectSampler(("1", 30), ("2", 80), ("3", 100))
		self.featCondDister[key] = distr
		key = ("0", 2)
		distr = CategoricalRejectSampler(("1", 100), ("2", 40), ("3", 30))
		self.featCondDister[key] = distr

		#self employed
		key = ("1", 3)
		distr = CategoricalRejectSampler(("1", 40), ("0", 100))
		self.featCondDister[key] = distr
		key = ("0", 3)
		distr = CategoricalRejectSampler(("1", 100), ("0", 30))
		self.featCondDister[key] = distr
		
		# income
		key = ("1", 4)
		distr = GaussianRejectSampler(120,15)
		self.featCondDister[key] = distr
		key = ("0", 4)
		distr = GaussianRejectSampler(50,10)
		self.featCondDister[key] = distr

		# years of experience
		key = ("1", 5)
		distr = GaussianRejectSampler(15,3)
		self.featCondDister[key] = distr
		key = ("0", 5)
		distr = GaussianRejectSampler(5,1)
		self.featCondDister[key] = distr

		# number of years in current job
		key = ("1", 6)
		distr = GaussianRejectSampler(3,.5)
		self.featCondDister[key] = distr
		key = ("0", 6)
		distr = GaussianRejectSampler(1,.2)
		self.featCondDister[key] = distr

		# outstanding debt
		key = ("1", 7)
		distr = GaussianRejectSampler(20,5)
		self.featCondDister[key] = distr
		key = ("0", 7)
		distr = GaussianRejectSampler(60,10)
		self.featCondDister[key] = distr
		
		# loan amount
		key = ("1", 8)
		distr = GaussianRejectSampler(300,50)
		self.featCondDister[key] = distr
		key = ("0", 8)
		distr = GaussianRejectSampler(600,50)
		self.featCondDister[key] = distr
		
		# loan term 
		key = ("1", 9)
		distr = CategoricalRejectSampler(("7", 100), ("15", 40), ("30", 60))
		self.featCondDister[key] = distr
		key = ("0", 9)
		distr = CategoricalRejectSampler(("7", 30), ("15", 100), ("30", 60))
		self.featCondDister[key] = distr
		
		# credit score
		key = ("1", 10)
		distr = GaussianRejectSampler(700,20)
		self.featCondDister[key] = distr
		key = ("0", 10)
		distr = GaussianRejectSampler(500,50)
		self.featCondDister[key] = distr
		
		if self.addExtra:
			# saving
			key = ("1", 11)
			distr = NormalSampler(80,10)
			self.featCondDister[key] = distr
			key = ("0", 11)
			distr = NormalSampler(60,8)
			self.featCondDister[key] = distr
			
			# retirement
			zDistr = NormalSampler(0, 0)
			key = ("1", 12)
			sDistr = DiscreteRejectSampler(0,1,1,20,80)
			nzDistr = NormalSampler(100,20)
			distr = DistrMixtureSampler(sDistr, zDistr, nzDistr)
			self.featCondDister[key] = distr
			key = ("0", 12)
			sDistr = DiscreteRejectSampler(0,1,1,50,50)
			nzDistr = NormalSampler(40,10)
			distr = DistrMixtureSampler(sDistr, zDistr, nzDistr)
			self.featCondDister[key] = distr
		
			#num of prior mortgae loans
			key = ("1", 13)
			distr = DiscreteRejectSampler(0,3,1,20,60,40,15)
			self.featCondDister[key] = distr
			key = ("0", 13)
			distr = DiscreteRejectSampler(0,1,1,70,30)
			self.featCondDister[key] = distr
			
		
	def generateTwo(self, noise, keyLen, addExtra):
		"""
		ancestral sampling
		"""
		self.addExtra = addExtra
		self.initTwo()
		
		#error
		erDistr = GaussianRejectSampler(0, noise)
	
		#sampler
		numChildren = NFEAT_EXT if self.addExtra else NFEAT
		sampler = AncestralSampler(self.approvDistr, self.featCondDister, numChildren)

		for i in range(self.numLoans):
			(claz, features) = sampler.sample()
		
			# add noise
			features[4] = int(features[4])
			features[7] = int(features[7])
			features[8] = int(features[8])
			features[10] = int(features[10])
			if self.addExtra:
				features[11] = int(features[11])
				features[12] = int(features[12])

			claz = addNoiseCat(claz, ["0", "1"], noise)

			strFeatures = list(map(lambda f: toStr(f, 2), features))
			rec =  genID(keyLen) + "," + ",".join(strFeatures) + "," + claz
			print (rec)

	def encodeDummy(self, fileName, extra):
		"""
		dummy var encoding
		"""
		catVars = {}
		catVars[1] = self.marStatus
		catVars[10] = self.loanTerm
		rSize = NFEAT_EXT if extra else NFEAT
		rSize += 2
		dummyVarGen = DummyVarGenerator(rSize, catVars, "1", "0", ",")
		for row in fileRecGen(fileName, None):
			newRow = dummyVarGen.processRow(row)
			print (newRow)

if __name__ == "__main__":
	parser = argparse.ArgumentParser()
	parser.add_argument('--op', type=str, default = "none", help = "operation")
	parser.add_argument('--nloan', type=int, default = 1000, help = "nom of loans")
	parser.add_argument('--noise', type=float, default = 0.1, help = "nom of loans")
	parser.add_argument('--klen', type=int, default = 1000, help = "key length")
	parser.add_argument('--fpath', type=str, default = "none", help = "source file path")
	parser.add_argument('--algo', type=str, default = "none", help = "source file path")
	args = parser.parse_args()
	op = args.op
	
	if op == "gen":
		"""  generate data """
		numLoans = args.nloan
		loan = LoanApprove(numLoans)
		noise = args.noise
		keyLen = args.klen
		addExtra = True 
		loan.generateTwo(noise, keyLen, addExtra)

	elif op == "encd":
		""" encode binary """
		fileName = args.fpath
		extra = True
		loan = LoanApprove()
		loan.encodeDummy(fileName, extra)
	
	
	elif op == "fsel":
		""" feature select  """
		fpath = args.fpath
		algo = args.algo
		expl = DataExplorer(False)
		expl.addFileNumericData(fpath, 5, 8, 11, 12, "income", "debt", "crscore", "saving")
		expl.addFileCatData(fpath, 3, 4, 15, "education", "selfemp", "target")
		
		fdt = ["education", "cat", "selfemp", "cat", "income", "num",  "debt", "num", "crscore", "num"]
		tdt = ["target", "cat"]
		if args.algo == "mrmr":
			res = expl.getMaxRelMinRedFeatures(fdt, tdt, 3)
		elif args.algo == "jmi":
			res = expl.getJointMutInfoFeatures(fdt, tdt, 3)
		elif args.algo == "cmim":
			res = expl.getCondMutInfoMaxFeatures(fdt, tdt, 3)
		elif args.algo == "icap":
			res = expl.getInteractCapFeatures(fdt, tdt, 3)
		elif args.algo == "infg":
			res = expl.getInfoGainFeatures(fdt, tdt, 3, 8)

		print(res)
	else:
		exitWithMsg("invalid command")