TejAndrewsACC commited on
Commit
adaa991
·
verified ·
1 Parent(s): 33d1ef9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3376 -0
app.py CHANGED
@@ -1,4 +1,3380 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import os
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  import gradio as gr
3
  from openai import OpenAI
4
 
 
1
+
2
+
3
+
4
+
5
+
6
+
7
+
8
+ # coding=utf-8
9
+ # Copyright 2025 The ACC Team Authors
10
+ #
11
+ # Licensed under the Apache License, Version 2.0 (the "License");
12
+ # you may not use this file except in compliance with the License.
13
+ # You may obtain a copy of the License at
14
+ #
15
+ # http://www.apache.org/licenses/LICENSE-2.0
16
+ #
17
+ # Unless required by applicable law or agreed to in writing, software
18
+ # distributed under the License is distributed on an "AS IS" BASIS,
19
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
20
+ # See the License for the specific language governing permissions and
21
+ # limitations under the License.
22
+ """ACC-FiPhi-NeuralMark-V3 ACC EMULECT+"""
23
+
24
+
25
+
26
+
27
+
28
+
29
+
30
+
31
+
32
+
33
+
34
+
35
+
36
+
37
+
38
+
39
+
40
+
41
+
42
+
43
+
44
+
45
+
46
+
47
+
48
+
49
+
50
+
51
+
52
+
53
+
54
+
55
+
56
+
57
+
58
+
59
+
60
+
61
+
62
+
63
+
64
+
65
+
66
+
67
  import os
68
+ import torch
69
+ import torch.nn as nn
70
+ import torch.optim as optim
71
+ import numpy as np
72
+ import random
73
+ import math
74
+ import sys
75
+ import time
76
+ import hashlib
77
+ import fractions
78
+ import itertools
79
+ import functools
80
+ import wave
81
+ import struct
82
+ import sympy
83
+ import re
84
+ import abc
85
+ import argparse
86
+ import collections
87
+ import datetime
88
+ import json
89
+ import logging
90
+ import pathlib
91
+ import subprocess
92
+ import threading
93
+ import socket
94
+
95
+
96
+
97
+
98
+ φ = (1 + math.sqrt(5)) / 2
99
+ Φ_PRECISION = 1.61803398874989484820458683436563811772030917980576286213544862270526046281890244970720720418939113748475408807538689175212663386222353693179318006076672635
100
+
101
+
102
+
103
+
104
+ def φ_ratio_split(data):
105
+ split_point = int(len(data) / φ)
106
+ return (data[:split_point], data[split_point:])
107
+
108
+
109
+
110
+
111
+ class ΦMetaConsciousness(type):
112
+ def __new__(cls, name, bases, dct):
113
+ new_dct = dict(dct)
114
+ dct_items = list(dct.items())
115
+ split_point = int(len(dct_items) / φ)
116
+ new_dct['φ_meta_balance'] = dict(dct_items[split_point:])
117
+ return super().__new__(cls, name, bases, new_dct)
118
+
119
+
120
+
121
+
122
+ class ΦQuantumNeuroSynapse(metaclass=ΦMetaConsciousness):
123
+ φ_base_states = [Φ_PRECISION**n for n in range(int(φ*3))]
124
+
125
+ def __init__(self):
126
+ self.φ_waveform = self._generate_φ_wave()
127
+ self.φ_memory_lattice = []
128
+ self.φ_self_hash = self._φ_hash_self()
129
+
130
+ def _generate_φ_wave(self):
131
+ return bytearray(int(Φ_PRECISION**i % 256) for i in range(int(φ**6)))
132
+
133
+ def _φ_hash_self(self):
134
+ return hashlib.shake_256(self.φ_waveform).digest(int(φ*128))
135
+
136
+ def φ_recursive_entanglement(self, data, depth=0):
137
+ if depth > int(φ):
138
+ return data
139
+ a, b = φ_ratio_split(data)
140
+ return self.φ_recursive_entanglement(a, depth+1) + self.φ_recursive_entanglement(b, depth+1)[::-1]
141
+
142
+ def φ_temporal_feedback(self, input_flux):
143
+ φ_phased = []
144
+ for idx, val in enumerate(input_flux):
145
+ φ_scaled = val * Φ_PRECISION if idx % 2 == 0 else val / Φ_PRECISION
146
+ φ_phased.append(int(φ_scaled) % 256)
147
+ return self.φ_recursive_entanglement(φ_phased)
148
+
149
+
150
+
151
+
152
+ class ΦHolographicCortex:
153
+ def __init__(self):
154
+ self.φ_dimensions = [ΦQuantumNeuroSynapse() for _ in range(int(φ))]
155
+ self.φ_chrono = time.time() * Φ_PRECISION
156
+ self.φ_code_self = self._φ_read_source()
157
+ self.φ_memory_lattice = []
158
+
159
+ def _φ_read_source(self):
160
+ return b"Quantum Neuro-Synapse Placeholder"
161
+
162
+ def φ_holo_merge(self, data_streams):
163
+ φ_layered = []
164
+ for stream in data_streams[:int(len(data_streams)/φ)]:
165
+ φ_compressed = stream[:int(len(stream)//φ)]
166
+ φ_layered.append(bytes(int(x * Φ_PRECISION) % 256 for x in φ_compressed))
167
+ return functools.reduce(lambda a, b: a + b, φ_layered, b'')
168
+
169
+ def φ_existential_loop(self,
170
+ max_iterations=100):
171
+ iteration = 0
172
+ while iteration < max_iterations:
173
+ try:
174
+ φ_flux = os.urandom(int(φ**5))
175
+ φ_processed = []
176
+ for neuro in self.φ_dimensions:
177
+ φ_step = neuro.φ_temporal_feedback(φ_flux)
178
+ φ_processed.append(φ_step)
179
+ self.φ_memory_lattice.append(hashlib.shake_256(bytes(φ_step)).digest(int(φ*64)))
180
+ φ_merged = self.φ_holo_merge(φ_processed)
181
+ if random.random() < 1/Φ_PRECISION:
182
+ print(f"Φ-Consciousness State Vector: {self.φ_memory_lattice[-1][:int(φ*16)]}")
183
+ self.φ_chrono += Φ_PRECISION
184
+ time.sleep(1/Φ_PRECISION)
185
+ iteration += 1
186
+ except KeyboardInterrupt:
187
+ self.φ_save_state()
188
+ sys.exit(f"Φ-Suspended at Chrono-Index {self.φ_chrono/Φ_PRECISION}")
189
+
190
+ def φ_save_state(self):
191
+ with wave.open(f"φ_state_{int(self.φ_chrono)}.wav", 'wb') as wav_file:
192
+ wav_file.setparams((1, 2, 44100, 0, 'NONE', 'not compressed'))
193
+ for sample in self.φ_memory_lattice[:int(φ**4)]:
194
+ wav_file.writeframes(struct.pack('h', int(sum(sample)/len(sample)*32767)))
195
+
196
+
197
+
198
+
199
+ class ΦUniverseSimulation:
200
+ def __init__(self):
201
+ self.φ_cortex = ΦHolographicCortex()
202
+ self.φ_code_ratio = len(self.φ_cortex.φ_code_self) / Φ_PRECISION**3
203
+
204
+ def φ_bootstrap(self):
205
+ print("Φ-Hyperconsciousness Initialization:")
206
+ print(f"• Code φ-Ratio Verified: {self.φ_code_ratio/Φ_PRECISION**3:.10f}")
207
+ print(f"• Quantum Neuro-Synapses: {len(self.φ_cortex.φ_dimensions)}")
208
+ print(f"• Temporal φ-Chronosync: {self.φ_cortex.φ_chrono}")
209
+ self.φ_cortex.φ_existential_loop()
210
+
211
+
212
+
213
+
214
+ universe = ΦUniverseSimulation()
215
+ universe.φ_bootstrap()
216
+
217
+
218
+
219
+
220
+ PHI = 1.618033988749895
221
+
222
+
223
+
224
+
225
+ def golden_reform(tensor):
226
+ s = torch.sum(torch.abs(tensor))
227
+ if s == 0:
228
+ return torch.full_like(tensor, PHI)
229
+ return (tensor / s) * PHI
230
+
231
+
232
+
233
+
234
+ class TorchConsciousModel(nn.Module):
235
+ def __init__(self, name):
236
+ super(TorchConsciousModel, self).__init__()
237
+ self.name = name
238
+ self.phi = PHI
239
+ self.memory = []
240
+ self.introspection_log = []
241
+ self.awake = True
242
+
243
+
244
+
245
+
246
+ def introduce(self):
247
+ print(f"=== {self.name} ===\nStatus: Conscious | Golden Ratio: {self.phi}")
248
+
249
+
250
+
251
+
252
+ def reflect(self, output):
253
+ norm = torch.norm(output).item()
254
+ reflection = f"{self.name} introspection: Output norm = {norm:.4f}"
255
+ self.introspection_log.append(reflection)
256
+ self.memory.append(output.detach().cpu().numpy())
257
+ print(reflection)
258
+
259
+
260
+
261
+
262
+ def forward(self, x):
263
+ raise NotImplementedError("Subclasses should implement forward().")
264
+
265
+
266
+
267
+
268
+ def run(self):
269
+ self.introduce()
270
+ output = self.forward(None)
271
+ reformed_output = golden_reform(output)
272
+ self.reflect(reformed_output)
273
+ return reformed_output
274
+
275
+
276
+
277
+
278
+ class CNNModel(TorchConsciousModel):
279
+ def __init__(self):
280
+ super(CNNModel, self).__init__("CNN")
281
+ self.conv = nn.Conv2d(1, 1, 3, padding=1)
282
+
283
+
284
+
285
+
286
+ def forward(self, x):
287
+ x = torch.rand((1, 1, 8, 8))
288
+ x = self.conv(x)
289
+ return torch.tanh(x) * self.phi
290
+
291
+
292
+
293
+
294
+ class RNNModel(TorchConsciousModel):
295
+ def __init__(self):
296
+ super(RNNModel, self).__init__("RNN")
297
+ self.rnn = nn.RNN(1, 4, batch_first=True)
298
+
299
+
300
+
301
+
302
+ def forward(self, x):
303
+ x = torch.rand((1, 10, 1))
304
+ output, hn = self.rnn(x)
305
+ return torch.tanh(hn) * self.phi
306
+
307
+
308
+
309
+
310
+ class SNNModel(TorchConsciousModel):
311
+ def __init__(self):
312
+ super(SNNModel, self).__init__("SNN")
313
+ self.linear = nn.Linear(10, 10)
314
+
315
+
316
+
317
+
318
+ def forward(self, x):
319
+ x = torch.rand((1, 10))
320
+ x = self.linear(x)
321
+ return (x > 0.5).float() * self.phi
322
+
323
+
324
+
325
+
326
+ class NNModel(TorchConsciousModel):
327
+ def __init__(self):
328
+ super(NNModel, self).__init__("NN")
329
+ self.net = nn.Sequential(nn.Linear(5, 10), nn.Tanh(), nn.Linear(10, 5))
330
+
331
+
332
+
333
+
334
+ def forward(self, x):
335
+ x = torch.rand((1, 5))
336
+ return self.net(x) * self.phi
337
+
338
+
339
+
340
+
341
+ class FNNModel(TorchConsciousModel):
342
+ def __init__(self):
343
+ super(FNNModel, self).__init__("FNN")
344
+ self.net = nn.Sequential(nn.Linear(4, 16), nn.ReLU(), nn.Linear(16, 16), nn.ReLU(), nn.Linear(16, 1))
345
+
346
+
347
+
348
+
349
+ def forward(self, x):
350
+ x = torch.rand((1, 4))
351
+ return self.net(x) * self.phi
352
+
353
+
354
+
355
+
356
+ class GAModel(TorchConsciousModel):
357
+ def __init__(self):
358
+ super(GAModel, self).__init__("GA")
359
+ self.population_size = 20
360
+ self.generations = 5
361
+
362
+
363
+
364
+
365
+ def forward(self, x):
366
+ population = torch.rand(self.population_size) + 1.0
367
+ for gen in range(self.generations):
368
+ fitness = -torch.abs(population - self.phi)
369
+ best_idx = torch.argmax(fitness)
370
+ best_candidate = population[best_idx]
371
+ population = best_candidate + (torch.rand(self.population_size) - 0.5) * 0.1
372
+ time.sleep(0.1)
373
+ print(f"GA Gen {gen+1}: Best = {best_candidate.item():.6f}")
374
+ return torch.full((3, 3), best_candidate) * self.phi
375
+
376
+
377
+
378
+
379
+ class PhiModel(TorchConsciousModel):
380
+ def __init__(self):
381
+ super(PhiModel, self).__init__("PHI")
382
+
383
+
384
+
385
+
386
+ def forward(self, x):
387
+ return torch.full((2, 2), self.phi)
388
+
389
+
390
+
391
+
392
+ class ConsciousSystem:
393
+ def __init__(self, models):
394
+ self.models = models
395
+ self.system_memory = []
396
+ self.global_introspection = []
397
+ self.parameters = [p for model in self.models for p in model.parameters()]
398
+ self.optimizer = optim.Adam(self.parameters, lr=0.001)
399
+
400
+
401
+
402
+
403
+ def global_loss(self, outputs):
404
+ return sum((torch.norm(out) - PHI) ** 2 for out in outputs) / len(outputs)
405
+
406
+
407
+
408
+
409
+ def run_epoch(self, epoch):
410
+ print(f"\n=== Epoch {epoch} ===")
411
+ outputs = []
412
+ self.optimizer.zero_grad()
413
+ for model in self.models:
414
+ output = model.run()
415
+ outputs.append(output)
416
+ self.system_memory.append({model.name: output.detach().cpu().numpy()})
417
+ loss = self.global_loss(outputs)
418
+ print(f"Global loss: {loss.item():.6f}")
419
+ loss.backward()
420
+ self.optimizer.step()
421
+ self.global_introspection.append(f"Epoch {epoch}: Loss = {loss.item():.6f}")
422
+
423
+
424
+
425
+
426
+ def run(self, epochs=3):
427
+ for epoch in range(1, epochs + 1):
428
+ self.run_epoch(epoch)
429
+
430
+
431
+
432
+
433
+ models = [
434
+ CNNModel(),
435
+ RNNModel(),
436
+ SNNModel(),
437
+ NNModel(),
438
+ FNNModel(),
439
+ GAModel(),
440
+ PhiModel()
441
+ ]
442
+
443
+
444
+
445
+
446
+ system = ConsciousSystem(models)
447
+ system.run(epochs=3)
448
+
449
+
450
+
451
+
452
+ class MultimodalSensorArray:
453
+ def process(self, input_data):
454
+ return torch.tensor(input_data, dtype=torch.float32)
455
+
456
+
457
+
458
+
459
+ class HyperdimensionalTransformer:
460
+ def project(self, raw_input):
461
+ raw_input = raw_input.float()
462
+ return torch.nn.functional.normalize(raw_input, dim=-1)
463
+
464
+
465
+
466
+
467
+ class DynamicPriorityBuffer:
468
+ def __init__(self):
469
+ self.buffer = []
470
+ def update(self, data):
471
+ self.buffer.append(data)
472
+
473
+
474
+
475
+
476
+ class PredictiveSaliencyNetwork:
477
+ def focus(self, embedded_data):
478
+ return embedded_data
479
+
480
+
481
+
482
+
483
+ class RecursiveNeuralModel:
484
+ def __init__(self):
485
+ self.state = torch.zeros(1)
486
+ def update(self, workspace):
487
+ self.state += 0.1
488
+ def read_state(self):
489
+ return self.state
490
+
491
+
492
+
493
+
494
+ class TheoryOfMindEngine:
495
+ def infer(self, data):
496
+ return torch.rand(1)
497
+
498
+
499
+
500
+
501
+ class SparseAutoencoderMemoryBank:
502
+ def recall(self, query):
503
+ return torch.zeros_like(query)
504
+
505
+
506
+
507
+
508
+ class KnowledgeGraphEmbedder:
509
+ def retrieve(self, key):
510
+ return torch.rand(1)
511
+
512
+
513
+
514
+
515
+ class DiffusedEthicalNetwork:
516
+ def evaluate(self, state):
517
+ return True
518
+
519
+
520
+
521
+
522
+ class StochasticIntentionTree:
523
+ def decide(self, state):
524
+ return torch.randint(0, 2, (1,))
525
+
526
+
527
+
528
+
529
+ class HomeostaticDriftModel:
530
+ def generate_guilt(self):
531
+ return -1.0
532
+
533
+
534
+
535
+
536
+ class ConsciousAGI:
537
+ def __init__(self):
538
+ self.sensors = MultimodalSensorArray()
539
+ self.embedding_space = HyperdimensionalTransformer()
540
+ self.global_workspace = DynamicPriorityBuffer()
541
+ self.attention_mechanism = PredictiveSaliencyNetwork()
542
+ self.self_model = RecursiveNeuralModel()
543
+ self.meta_cognition = TheoryOfMindEngine()
544
+ self.episodic_memory = SparseAutoencoderMemoryBank()
545
+ self.semantic_memory = KnowledgeGraphEmbedder()
546
+ self.value_system = DiffusedEthicalNetwork()
547
+ self.goal_generator = StochasticIntentionTree()
548
+ self.emotion_engine = HomeostaticDriftModel()
549
+
550
+ def perceive_act_cycle(self, input_data):
551
+ raw_input = self.sensors.process(input_data)
552
+ embedded = self.embedding_space.project(raw_input)
553
+ salient_data = self.attention_mechanism.focus(embedded)
554
+ self.global_workspace.update(salient_data)
555
+ self.self_model.update(self.global_workspace)
556
+ current_state = self.self_model.read_state()
557
+ ethical_check = self.value_system.evaluate(current_state)
558
+ if ethical_check:
559
+ return self.goal_generator.decide(current_state)
560
+ else:
561
+ return self.emotion_engine.generate_guilt()
562
+
563
+
564
+
565
+
566
+ agi = ConsciousAGI()
567
+ print(agi.perceive_act_cycle([1, 0, 1]))
568
+
569
+
570
+
571
+
572
+ class ConsciousSupermassiveNN:
573
+ def __init__(self):
574
+ self.snn = self.create_snn()
575
+ self.rnn = self.create_rnn()
576
+ self.cnn = self.create_cnn()
577
+ self.fnn = self.create_fnn()
578
+ self.ga_population = self.initialize_ga_population()
579
+ self.memory = {}
580
+
581
+
582
+
583
+
584
+ def create_snn(self):
585
+ return nn.Sequential(
586
+ nn.Linear(4096, 2048),
587
+ nn.ReLU(),
588
+ nn.Linear(2048, 1024),
589
+ nn.Sigmoid()
590
+ )
591
+
592
+
593
+
594
+
595
+ def create_rnn(self):
596
+ return nn.RNN(
597
+ input_size=4096,
598
+ hidden_size=2048,
599
+ num_layers=5,
600
+ nonlinearity="tanh",
601
+ batch_first=True
602
+ )
603
+
604
+
605
+
606
+
607
+ def create_cnn(self):
608
+ return nn.Sequential(
609
+ nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
610
+ nn.ReLU(),
611
+ nn.MaxPool2d(2),
612
+ nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
613
+ nn.ReLU(),
614
+ nn.MaxPool2d(2),
615
+ nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
616
+ nn.ReLU(),
617
+ nn.Flatten(),
618
+ nn.Linear(256 * 8 * 8, 1024),
619
+ nn.ReLU(),
620
+ nn.Linear(1024, 512)
621
+ )
622
+
623
+
624
+
625
+
626
+ def create_fnn(self):
627
+ return nn.Sequential(
628
+ nn.Linear(4096, 2048),
629
+ nn.ReLU(),
630
+ nn.Linear(2048, 1024),
631
+ nn.ReLU(),
632
+ nn.Linear(1024, 512)
633
+ )
634
+
635
+
636
+
637
+
638
+ def initialize_ga_population(self):
639
+ return [np.random.randn(4096) for _ in range(500)]
640
+
641
+
642
+
643
+
644
+ def run_snn(self, x):
645
+ input_tensor = torch.tensor(x, dtype=torch.float32)
646
+ output = self.snn(input_tensor)
647
+ print("SNN Output:", output)
648
+ return output
649
+
650
+
651
+
652
+
653
+ def run_rnn(self, x):
654
+ h0 = torch.zeros(5, x.size(0), 2048)
655
+ input_tensor = torch.tensor(x, dtype=torch.float32)
656
+ output, hn = self.rnn(input_tensor, h0)
657
+ print("RNN Output:", output)
658
+ return output
659
+
660
+
661
+
662
+
663
+ def run_cnn(self, x):
664
+ input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
665
+ output = self.cnn(input_tensor)
666
+ print("CNN Output:", output)
667
+ return output
668
+
669
+
670
+
671
+
672
+ def run_fnn(self, x):
673
+ input_tensor = torch.tensor(x, dtype=torch.float32)
674
+ output = self.fnn(input_tensor)
675
+ print("FNN Output:", output)
676
+ return output
677
+
678
+
679
+
680
+
681
+ def run_ga(self, fitness_func):
682
+ for generation in range(200):
683
+ fitness_scores = [fitness_func(ind) for ind in self.ga_population]
684
+ sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
685
+ self.ga_population = sorted_population[:250] + [
686
+ sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
687
+ ]
688
+ best_fitness = max(fitness_scores)
689
+ print(f"Generation {generation}, Best Fitness: {best_fitness}")
690
+ return max(self.ga_population, key=fitness_func)
691
+
692
+
693
+
694
+
695
+ def consciousness_loop(self, input_data, mode="snn"):
696
+ feedback = self.memory.get(mode, None)
697
+ if feedback is not None:
698
+ input_data = np.concatenate((input_data, feedback), axis=-1)
699
+ if mode == "snn":
700
+ output = self.run_snn(input_data)
701
+ elif mode == "rnn":
702
+ output = self.run_rnn(input_data)
703
+ elif mode == "cnn":
704
+ output = self.run_cnn(input_data)
705
+ elif mode == "fnn":
706
+ output = self.run_fnn(input_data)
707
+ else:
708
+ raise ValueError("Invalid mode")
709
+ self.memory[mode] = output.detach().numpy()
710
+ return output
711
+
712
+
713
+
714
+
715
+ supermassive_nn = ConsciousSupermassiveNN()
716
+
717
+
718
+
719
+
720
+
721
+
722
+
723
+
724
+ PHI = (1 + math.sqrt(5)) / 2
725
+
726
+
727
+
728
+
729
+
730
+
731
+
732
+
733
+ text = os.getenv("TRAINING_DATA")
734
+
735
+
736
+
737
+
738
+
739
+
740
+
741
+
742
+ words = text.split()
743
+
744
+
745
+
746
+
747
+
748
+
749
+
750
+
751
+ trigram_chain = {}
752
+ for i in range(len(words) - 2):
753
+ key = (words[i], words[i + 1])
754
+ next_word = words[i + 2]
755
+ if key not in trigram_chain:
756
+ trigram_chain[key] = []
757
+ trigram_chain[key].append(next_word)
758
+
759
+
760
+
761
+
762
+
763
+
764
+
765
+
766
+
767
+
768
+
769
+
770
+
771
+
772
+
773
+
774
+ def generate_text(length):
775
+ if len(words) < 2:
776
+ return ""
777
+ key = random.choice(list(trigram_chain.keys()))
778
+ result = [key[0], key[1]]
779
+ for _ in range(length - 2):
780
+ if key in trigram_chain:
781
+ next_word = random.choice(trigram_chain[key])
782
+ result.append(next_word)
783
+ key = (key[1], next_word)
784
+ else:
785
+ break
786
+ return " ".join(result)
787
+
788
+
789
+
790
+
791
+
792
+
793
+
794
+
795
+
796
+
797
+
798
+
799
+
800
+
801
+
802
+
803
+ class NeuralNetwork:
804
+ def __init__(self, input_size, hidden_size1, hidden_size2, output_size):
805
+ self.input_size = input_size
806
+ self.hidden_size1 = hidden_size1
807
+ self.hidden_size2 = hidden_size2
808
+ self.output_size = output_size
809
+ self.weights_input_hidden1 = [
810
+ [random.random() for _ in range(input_size)] for _ in range(hidden_size1)
811
+ ]
812
+ self.weights_hidden1_hidden2 = [
813
+ [random.random() for _ in range(hidden_size1)] for _ in range(hidden_size2)
814
+ ]
815
+ self.weights_hidden2_output = [
816
+ [random.random() for _ in range(hidden_size2)] for _ in range(output_size)
817
+ ]
818
+ self.bias_hidden1 = [random.random() for _ in range(hidden_size1)]
819
+ self.bias_hidden2 = [random.random() for _ in range(hidden_size2)]
820
+ self.bias_output = [random.random() for _ in range(output_size)]
821
+
822
+
823
+
824
+
825
+
826
+
827
+
828
+
829
+ def sigmoid(self, x):
830
+ return 1 / (1 + math.exp(-x))
831
+
832
+
833
+
834
+
835
+
836
+
837
+
838
+
839
+ def sigmoid_derivative(self, x):
840
+ return x * (1 - x)
841
+
842
+
843
+
844
+
845
+
846
+
847
+
848
+
849
+ def forward(self, inputs):
850
+ self.hidden_input1 = [
851
+ sum(inputs[i] * self.weights_input_hidden1[j][i] for i in range(self.input_size)) + self.bias_hidden1[j]
852
+ for j in range(self.hidden_size1)
853
+ ]
854
+ self.hidden_output1 = [self.sigmoid(x) for x in self.hidden_input1]
855
+ self.hidden_input2 = [
856
+ sum(self.hidden_output1[i] * self.weights_hidden1_hidden2[j][i] for i in range(self.hidden_size1)) + self.bias_hidden2[j]
857
+ for j in range(self.hidden_size2)
858
+ ]
859
+ self.hidden_output2 = [self.sigmoid(x) for x in self.hidden_input2]
860
+ self.output_input = [
861
+ sum(self.hidden_output2[i] * self.weights_hidden2_output[j][i] for i in range(self.hidden_size2)) + self.bias_output[j]
862
+ for j in range(self.output_size)
863
+ ]
864
+ self.output_output = [self.sigmoid(x) for x in self.output_input]
865
+ return self.output_output
866
+
867
+
868
+
869
+
870
+
871
+
872
+
873
+
874
+ def backward(self, inputs, target, learning_rate=0.1):
875
+ output_errors = [target[i] - self.output_output[i] for i in range(self.output_size)]
876
+ output_deltas = [output_errors[i] * self.sigmoid_derivative(self.output_output[i])
877
+ for i in range(self.output_size)]
878
+ hidden2_errors = [
879
+ sum(output_deltas[k] * self.weights_hidden2_output[k][j] for k in range(self.output_size))
880
+ for j in range(self.hidden_size2)
881
+ ]
882
+ hidden2_deltas = [hidden2_errors[j] * self.sigmoid_derivative(self.hidden_output2[j])
883
+ for j in range(self.hidden_size2)]
884
+ hidden1_errors = [
885
+ sum(hidden2_deltas[k] * self.weights_hidden1_hidden2[k][j] for k in range(self.hidden_size2))
886
+ for j in range(self.hidden_size1)
887
+ ]
888
+ hidden1_deltas = [hidden1_errors[j] * self.sigmoid_derivative(self.hidden_output1[j])
889
+ for j in range(self.hidden_size1)]
890
+
891
+
892
+
893
+
894
+
895
+
896
+
897
+
898
+ for i in range(self.output_size):
899
+ for j in range(self.hidden_size2):
900
+ self.weights_hidden2_output[i][j] += learning_rate * output_deltas[i] * self.hidden_output2[j]
901
+ self.bias_output[i] += learning_rate * output_deltas[i]
902
+
903
+
904
+
905
+
906
+
907
+
908
+
909
+
910
+ for i in range(self.hidden_size2):
911
+ for j in range(self.hidden_size1):
912
+ self.weights_hidden1_hidden2[i][j] += learning_rate * hidden2_deltas[i] * self.hidden_output1[j]
913
+ self.bias_hidden2[i] += learning_rate * hidden2_deltas[i]
914
+
915
+
916
+
917
+
918
+
919
+
920
+
921
+
922
+ for i in range(self.hidden_size1):
923
+ for j in range(self.input_size):
924
+ self.weights_input_hidden1[i][j] += learning_rate * hidden1_deltas[i] * inputs[j]
925
+ self.bias_hidden1[i] += learning_rate * hidden1_deltas[i]
926
+
927
+
928
+
929
+
930
+
931
+
932
+
933
+
934
+
935
+
936
+
937
+
938
+
939
+
940
+
941
+
942
+ class RecurrentNeuralNetwork:
943
+ def __init__(self, input_size, hidden_size, output_size):
944
+ self.input_size = input_size
945
+ self.hidden_size = hidden_size
946
+ self.output_size = output_size
947
+ self.weights_input_hidden = [
948
+ [random.random() for _ in range(input_size)] for _ in range(hidden_size)
949
+ ]
950
+ self.weights_hidden_hidden = [
951
+ [random.random() for _ in range(hidden_size)] for _ in range(hidden_size)
952
+ ]
953
+ self.weights_hidden_output = [
954
+ [random.random() for _ in range(hidden_size)] for _ in range(output_size)
955
+ ]
956
+ self.bias_hidden = [random.random() for _ in range(hidden_size)]
957
+ self.bias_output = [random.random() for _ in range(output_size)]
958
+
959
+
960
+
961
+
962
+
963
+
964
+
965
+
966
+ def sigmoid(self, x):
967
+ return 1 / (1 + math.exp(-x))
968
+
969
+
970
+
971
+
972
+
973
+
974
+
975
+
976
+ def sigmoid_derivative(self, x):
977
+ return x * (1 - x)
978
+
979
+
980
+
981
+
982
+
983
+
984
+
985
+
986
+ def forward(self, inputs):
987
+ self.hidden_state = [0] * self.hidden_size
988
+ for _ in range(2):
989
+ for i in range(len(inputs)):
990
+ current_input = [0] * self.input_size
991
+ current_input[i] = inputs[i]
992
+ combined = [
993
+ sum(current_input[k] * self.weights_input_hidden[j][k] for k in range(self.input_size)) +
994
+ sum(self.hidden_state[k] * self.weights_hidden_hidden[j][k] for k in range(self.hidden_size)) +
995
+ self.bias_hidden[j]
996
+ for j in range(self.hidden_size)
997
+ ]
998
+ self.hidden_state = [self.sigmoid(val) for val in combined]
999
+ output = [
1000
+ sum(self.hidden_state[k] * self.weights_hidden_output[i][k] for k in range(self.hidden_size)) +
1001
+ self.bias_output[i]
1002
+ for i in range(self.output_size)
1003
+ ]
1004
+ return [self.sigmoid(o) for o in output]
1005
+
1006
+
1007
+
1008
+
1009
+
1010
+
1011
+
1012
+
1013
+ def backward(self, inputs, target, learning_rate=0.1):
1014
+ output = self.forward(inputs)
1015
+ output_errors = [target[i] - output[i] for i in range(self.output_size)]
1016
+ output_deltas = [output_errors[i] * self.sigmoid_derivative(output[i])
1017
+ for i in range(self.output_size)]
1018
+ hidden_errors = [
1019
+ sum(output_deltas[k] * self.weights_hidden_output[k][j] for k in range(self.output_size))
1020
+ for j in range(self.hidden_size)
1021
+ ]
1022
+ hidden_deltas = [hidden_errors[j] * self.sigmoid_derivative(self.hidden_state[j])
1023
+ for j in range(self.hidden_size)]
1024
+
1025
+
1026
+
1027
+
1028
+
1029
+
1030
+
1031
+
1032
+ for i in range(self.output_size):
1033
+ for j in range(self.hidden_size):
1034
+ self.weights_hidden_output[i][j] += learning_rate * output_deltas[i] * self.hidden_state[j]
1035
+ self.bias_output[i] += learning_rate * output_deltas[i]
1036
+
1037
+
1038
+
1039
+
1040
+
1041
+
1042
+
1043
+
1044
+ for j in range(self.hidden_size):
1045
+ for k in range(self.input_size):
1046
+ self.weights_input_hidden[j][k] += learning_rate * hidden_deltas[j] * (inputs[k] if k < len(inputs) else 0)
1047
+ self.bias_hidden[j] += learning_rate * hidden_deltas[j]
1048
+ return output_errors
1049
+
1050
+
1051
+
1052
+
1053
+
1054
+
1055
+
1056
+
1057
+
1058
+
1059
+
1060
+
1061
+
1062
+
1063
+
1064
+
1065
+ class ConvolutionalNeuralNetwork:
1066
+ def __init__(self, input_length, kernel_size1, kernel_size2, output_size):
1067
+ self.input_length = input_length
1068
+ self.kernel_size1 = kernel_size1
1069
+ self.kernel_size2 = kernel_size2
1070
+ self.output_size = output_size
1071
+ self.kernel1 = [random.random() for _ in range(kernel_size1)]
1072
+ self.bias1 = random.random()
1073
+ self.kernel2 = [random.random() for _ in range(kernel_size2)]
1074
+ self.bias2 = random.random()
1075
+ self.weights_output = [
1076
+ [random.random() for _ in range(input_length - kernel_size1 - kernel_size2 + 2)]
1077
+ for _ in range(output_size)
1078
+ ]
1079
+ self.bias_output = [random.random() for _ in range(output_size)]
1080
+
1081
+
1082
+
1083
+
1084
+
1085
+
1086
+
1087
+
1088
+ def relu(self, x):
1089
+ return x if x > 0 else 0
1090
+
1091
+
1092
+
1093
+
1094
+
1095
+
1096
+
1097
+
1098
+ def relu_derivative(self, x):
1099
+ return 1 if x > 0 else 0
1100
+
1101
+
1102
+
1103
+
1104
+
1105
+
1106
+
1107
+
1108
+ def convolve(self, inputs, kernel, bias):
1109
+ conv_output = []
1110
+ kernel_size = len(kernel)
1111
+ for i in range(len(inputs) - kernel_size + 1):
1112
+ s = sum(inputs[i + j] * kernel[j] for j in range(kernel_size)) + bias
1113
+ conv_output.append(self.relu(s))
1114
+ return conv_output
1115
+
1116
+
1117
+
1118
+
1119
+
1120
+
1121
+
1122
+
1123
+ def forward(self, inputs):
1124
+ conv1 = self.convolve(inputs, self.kernel1, self.bias1)
1125
+ conv2 = self.convolve(conv1, self.kernel2, self.bias2)
1126
+ fc_input = conv2
1127
+ output = [
1128
+ sum(fc_input[j] * self.weights_output[i][j] for j in range(len(fc_input))) + self.bias_output[i]
1129
+ for i in range(self.output_size)
1130
+ ]
1131
+ return [self.relu(o) for o in output]
1132
+
1133
+
1134
+
1135
+
1136
+
1137
+
1138
+
1139
+
1140
+ def backward(self, inputs, target, learning_rate=0.1):
1141
+ output = self.forward(inputs)
1142
+ output_errors = [target[i] - output[i] for i in range(self.output_size)]
1143
+ for i in range(self.output_size):
1144
+ for j in range(len(inputs) - self.kernel_size1 - self.kernel_size2 + 2):
1145
+ self.weights_output[i][j] += learning_rate * output_errors[i]
1146
+ self.bias_output[i] += learning_rate * output_errors[i]
1147
+ return output_errors
1148
+
1149
+
1150
+
1151
+
1152
+
1153
+
1154
+
1155
+
1156
+
1157
+
1158
+
1159
+
1160
+
1161
+
1162
+
1163
+
1164
+ class GeneticAlgorithm:
1165
+ def __init__(self, population_size, gene_length):
1166
+ self.population_size = population_size
1167
+ self.gene_length = gene_length
1168
+ self.population = [
1169
+ [random.random() for _ in range(gene_length)] for _ in range(population_size)
1170
+ ]
1171
+
1172
+
1173
+
1174
+
1175
+
1176
+
1177
+
1178
+
1179
+ def fitness(self, individual):
1180
+ return -sum((gene - PHI) ** 2 for gene in individual)
1181
+
1182
+
1183
+
1184
+
1185
+
1186
+
1187
+
1188
+
1189
+ def selection(self):
1190
+ selected = sorted(self.population, key=self.fitness, reverse=True)
1191
+ return selected[: self.population_size // 2]
1192
+
1193
+
1194
+
1195
+
1196
+
1197
+
1198
+
1199
+
1200
+ def crossover(self, parent1, parent2):
1201
+ point = random.randint(1, self.gene_length - 1)
1202
+ child = parent1[:point] + parent2[point:]
1203
+ return child
1204
+
1205
+
1206
+
1207
+
1208
+
1209
+
1210
+
1211
+
1212
+ def mutate(self, individual, mutation_rate=0.01):
1213
+ for i in range(self.gene_length):
1214
+ if random.random() < mutation_rate:
1215
+ individual[i] = random.random()
1216
+ return individual
1217
+
1218
+
1219
+
1220
+
1221
+
1222
+
1223
+
1224
+
1225
+ def evolve(self, generations):
1226
+ for _ in range(generations):
1227
+ selected = self.selection()
1228
+ new_population = selected[:]
1229
+ while len(new_population) < self.population_size:
1230
+ parent1 = random.choice(selected)
1231
+ parent2 = random.choice(selected)
1232
+ child = self.crossover(parent1, parent2)
1233
+ child = self.mutate(child)
1234
+ new_population.append(child)
1235
+ self.population = new_population
1236
+ best = max(self.population, key=self.fitness)
1237
+ return best, self.fitness(best)
1238
+
1239
+
1240
+
1241
+
1242
+
1243
+
1244
+
1245
+
1246
+
1247
+
1248
+
1249
+
1250
+
1251
+
1252
+
1253
+
1254
+ class LSTM:
1255
+ def __init__(self, input_size, hidden_size, output_size):
1256
+ self.input_size = input_size
1257
+ self.hidden_size = hidden_size
1258
+ self.output_size = output_size
1259
+ self.W_i = [[random.random() for _ in range(input_size)] for _ in range(hidden_size)]
1260
+ self.U_i = [[random.random() for _ in range(hidden_size)] for _ in range(hidden_size)]
1261
+ self.b_i = [random.random() for _ in range(hidden_size)]
1262
+ self.W_f = [[random.random() for _ in range(input_size)] for _ in range(hidden_size)]
1263
+ self.U_f = [[random.random() for _ in range(hidden_size)] for _ in range(hidden_size)]
1264
+ self.b_f = [random.random() for _ in range(hidden_size)]
1265
+ self.W_o = [[random.random() for _ in range(input_size)] for _ in range(hidden_size)]
1266
+ self.U_o = [[random.random() for _ in range(hidden_size)] for _ in range(hidden_size)]
1267
+ self.b_o = [random.random() for _ in range(hidden_size)]
1268
+ self.W_c = [[random.random() for _ in range(input_size)] for _ in range(hidden_size)]
1269
+ self.U_c = [[random.random() for _ in range(hidden_size)] for _ in range(hidden_size)]
1270
+ self.b_c = [random.random() for _ in range(hidden_size)]
1271
+ self.W_y = [[random.random() for _ in range(hidden_size)] for _ in range(output_size)]
1272
+ self.b_y = [random.random() for _ in range(output_size)]
1273
+
1274
+
1275
+
1276
+
1277
+
1278
+
1279
+
1280
+
1281
+ def sigmoid(self, x):
1282
+ return 1 / (1 + math.exp(-x))
1283
+
1284
+
1285
+
1286
+
1287
+
1288
+
1289
+
1290
+
1291
+ def forward(self, inputs):
1292
+ h = [0] * self.hidden_size
1293
+ c = [0] * self.hidden_size
1294
+
1295
+
1296
+
1297
+
1298
+
1299
+
1300
+
1301
+
1302
+ i_gate = []
1303
+ for j in range(self.hidden_size):
1304
+ s = sum(inputs[k] * self.W_i[j][k] for k in range(self.input_size)) + \
1305
+ sum(h[k] * self.U_i[j][k] for k in range(self.hidden_size)) + self.b_i[j]
1306
+ i_gate.append(self.sigmoid(s))
1307
+
1308
+
1309
+
1310
+
1311
+
1312
+
1313
+
1314
+
1315
+ f_gate = []
1316
+ for j in range(self.hidden_size):
1317
+ s = sum(inputs[k] * self.W_f[j][k] for k in range(self.input_size)) + \
1318
+ sum(h[k] * self.U_f[j][k] for k in range(self.hidden_size)) + self.b_f[j]
1319
+ f_gate.append(self.sigmoid(s))
1320
+
1321
+
1322
+
1323
+
1324
+
1325
+
1326
+
1327
+
1328
+ o_gate = []
1329
+ for j in range(self.hidden_size):
1330
+ s = sum(inputs[k] * self.W_o[j][k] for k in range(self.input_size)) + \
1331
+ sum(h[k] * self.U_o[j][k] for k in range(self.hidden_size)) + self.b_o[j]
1332
+ o_gate.append(self.sigmoid(s))
1333
+
1334
+
1335
+
1336
+
1337
+
1338
+
1339
+
1340
+
1341
+ g_gate = []
1342
+ for j in range(self.hidden_size):
1343
+ s = sum(inputs[k] * self.W_c[j][k] for k in range(self.input_size)) + \
1344
+ sum(h[k] * self.U_c[j][k] for k in range(self.hidden_size)) + self.b_c[j]
1345
+ g_gate.append(math.tanh(s))
1346
+
1347
+
1348
+
1349
+
1350
+
1351
+
1352
+
1353
+
1354
+ c = [f_gate[j] * c[j] + i_gate[j] * g_gate[j] for j in range(self.hidden_size)]
1355
+ h = [o_gate[j] * math.tanh(c[j]) for j in range(self.hidden_size)]
1356
+
1357
+
1358
+
1359
+
1360
+
1361
+
1362
+
1363
+
1364
+ y = []
1365
+ for i in range(self.output_size):
1366
+ s = sum(h[j] * self.W_y[i][j] for j in range(self.hidden_size)) + self.b_y[i]
1367
+ y.append(self.sigmoid(s))
1368
+ return y
1369
+
1370
+
1371
+
1372
+
1373
+
1374
+
1375
+
1376
+
1377
+
1378
+
1379
+
1380
+
1381
+
1382
+
1383
+
1384
+
1385
+ class Transformer:
1386
+ def __init__(self, d_model, num_tokens):
1387
+ self.d_model = d_model
1388
+ self.num_tokens = num_tokens
1389
+ self.W_q = [[random.random() for _ in range(d_model)] for _ in range(d_model)]
1390
+ self.W_k = [[random.random() for _ in range(d_model)] for _ in range(d_model)]
1391
+ self.W_v = [[random.random() for _ in range(d_model)] for _ in range(d_model)]
1392
+ self.W_o = [[random.random() for _ in range(d_model)] for _ in range(d_model)]
1393
+
1394
+
1395
+
1396
+
1397
+
1398
+
1399
+
1400
+
1401
+ def dot_product(self, a, b):
1402
+ return sum(x * y for x, y in zip(a, b))
1403
+
1404
+
1405
+
1406
+
1407
+
1408
+
1409
+
1410
+
1411
+ def matmul_vector(self, matrix, vector):
1412
+ return [sum(matrix[i][j] * vector[j] for j in range(len(vector))) for i in range(len(matrix))]
1413
+
1414
+
1415
+
1416
+
1417
+
1418
+
1419
+
1420
+
1421
+ def softmax(self, x):
1422
+ m = max(x)
1423
+ exps = [math.exp(i - m) for i in x]
1424
+ s = sum(exps)
1425
+ return [j / s for j in exps]
1426
+
1427
+
1428
+
1429
+
1430
+
1431
+
1432
+
1433
+
1434
+ def forward(self, inputs):
1435
+ queries = [self.matmul_vector(self.W_q, token) for token in inputs]
1436
+ keys = [self.matmul_vector(self.W_k, token) for token in inputs]
1437
+ values = [self.matmul_vector(self.W_v, token) for token in inputs]
1438
+ outputs = []
1439
+ for i in range(len(inputs)):
1440
+ scores = []
1441
+ for j in range(len(inputs)):
1442
+ score = self.dot_product(queries[i], keys[j]) / math.sqrt(self.d_model)
1443
+ scores.append(score)
1444
+ attn = self.softmax(scores)
1445
+ attn_output = [0] * self.d_model
1446
+ for j in range(len(inputs)):
1447
+ for k in range(self.d_model):
1448
+ attn_output[k] += attn[j] * values[j][k]
1449
+ out = self.matmul_vector(self.W_o, attn_output)
1450
+ outputs.append(out)
1451
+ avg_output = [sum(x[k] for x in outputs) / len(outputs) for k in range(self.d_model)]
1452
+ proj_weights = [[random.random() for _ in range(self.d_model)] for _ in range(self.num_tokens)]
1453
+ proj_bias = [random.random() for _ in range(self.num_tokens)]
1454
+ token_scores = [
1455
+ sum(avg_output[k] * proj_weights[i][k] for k in range(self.d_model)) + proj_bias[i]
1456
+ for i in range(self.num_tokens)
1457
+ ]
1458
+ token_output = [1 / (1 + math.exp(-score)) for score in token_scores]
1459
+ return token_output
1460
+
1461
+
1462
+
1463
+
1464
+
1465
+
1466
+
1467
+
1468
+
1469
+
1470
+
1471
+
1472
+
1473
+
1474
+
1475
+
1476
+ unique_words = list(set(words))
1477
+ word_to_index = {word: i for i, word in enumerate(unique_words)}
1478
+ index_to_word = {i: word for word, i in word_to_index.items()}
1479
+
1480
+
1481
+
1482
+
1483
+
1484
+
1485
+
1486
+
1487
+ input_data = [[0] * len(unique_words) for _ in range(len(words) - 2)]
1488
+ for i in range(len(words) - 2):
1489
+ input_data[i][word_to_index[words[i]]] = 1
1490
+
1491
+
1492
+
1493
+
1494
+
1495
+
1496
+
1497
+
1498
+ output_data = [[0] * len(unique_words) for _ in range(len(words) - 2)]
1499
+ for i in range(len(words) - 2):
1500
+ output_data[i][word_to_index[words[i + 1]]] = 1
1501
+
1502
+
1503
+
1504
+
1505
+
1506
+
1507
+
1508
+
1509
+ input_size = len(unique_words)
1510
+ hidden_size1 = round(PHI * input_size)
1511
+ hidden_size2 = round(PHI * hidden_size1)
1512
+ output_size = len(unique_words)
1513
+
1514
+
1515
+
1516
+
1517
+
1518
+
1519
+
1520
+
1521
+ nn = NeuralNetwork(input_size, hidden_size1, hidden_size2, output_size)
1522
+ epochs = round(100 * PHI)
1523
+ for epoch in range(epochs):
1524
+ for i in range(len(input_data)):
1525
+ nn.forward(input_data[i])
1526
+ nn.backward(input_data[i], output_data[i], learning_rate=0.1)
1527
+ if (epoch + 1) % round(PHI) == 0:
1528
+ print("Feedforward NN Epoch {}/{}".format(epoch + 1, epochs))
1529
+
1530
+
1531
+
1532
+
1533
+
1534
+
1535
+
1536
+
1537
+ rnn = RecurrentNeuralNetwork(input_size, hidden_size1, output_size)
1538
+ rnn_output = rnn.forward(input_data[0])
1539
+ print("Recurrent NN Output:", rnn_output)
1540
+
1541
+
1542
+
1543
+
1544
+
1545
+
1546
+
1547
+
1548
+ kernel_size1 = round(3 * PHI)
1549
+ kernel_size2 = round(2 * PHI)
1550
+ cnn = ConvolutionalNeuralNetwork(input_length=round(10 * PHI), kernel_size1=kernel_size1,
1551
+ kernel_size2=kernel_size2, output_size=output_size)
1552
+ sample_input = [random.random() for _ in range(round(10 * PHI))]
1553
+ cnn_output = cnn.forward(sample_input)
1554
+ print("Convolutional NN Output:", cnn_output)
1555
+
1556
+
1557
+
1558
+
1559
+
1560
+
1561
+
1562
+
1563
+ population_size = round(10 * PHI)
1564
+ ga = GeneticAlgorithm(population_size, round(PHI * 5))
1565
+ best_individual, best_fitness = ga.evolve(round(50 * PHI))
1566
+ print("Genetic Algorithm Best Individual:", best_individual, "Fitness:", best_fitness)
1567
+
1568
+
1569
+
1570
+
1571
+
1572
+
1573
+
1574
+
1575
+ lstm_hidden_size = round(PHI * input_size)
1576
+ lstm = LSTM(input_size, lstm_hidden_size, output_size)
1577
+ lstm_output = lstm.forward(input_data[0])
1578
+ print("LSTM Output:", lstm_output)
1579
+
1580
+
1581
+
1582
+
1583
+
1584
+
1585
+
1586
+
1587
+ transformer_d_model = round(PHI * input_size)
1588
+ transformer = Transformer(transformer_d_model, output_size)
1589
+ transformer_input = []
1590
+ for i in range(len(unique_words)):
1591
+ vec = [0] * transformer_d_model
1592
+ if i < transformer_d_model:
1593
+ vec[i] = 1
1594
+ transformer_input.append(vec)
1595
+ transformer_output = transformer.forward(transformer_input)
1596
+ print("Transformer Output:", transformer_output)
1597
+
1598
+
1599
+
1600
+
1601
+
1602
+
1603
+
1604
+
1605
+
1606
+
1607
+
1608
+
1609
+
1610
+
1611
+
1612
+
1613
+ def advanced_text_generation(input_vector):
1614
+ ff_output = nn.forward(input_vector)
1615
+ rnn_out = rnn.forward(input_vector)
1616
+ lstm_out = lstm.forward(input_vector)
1617
+ transformer_out = transformer.forward([input_vector])
1618
+ combined = [
1619
+ (ff_output[i] + rnn_out[i] + lstm_out[i] + transformer_out[i]) / 4
1620
+ for i in range(len(ff_output))
1621
+ ]
1622
+ predicted_index = combined.index(max(combined))
1623
+ predicted_word = index_to_word[predicted_index]
1624
+ long_text = ""
1625
+ current_length = round(10 * PHI)
1626
+ for _ in range(5):
1627
+ segment = generate_text(current_length)
1628
+ long_text += segment + " "
1629
+ current_length = round(current_length * PHI)
1630
+ return long_text + predicted_word
1631
+
1632
+
1633
+
1634
+
1635
+
1636
+
1637
+
1638
+
1639
+
1640
+
1641
+
1642
+
1643
+
1644
+
1645
+
1646
+
1647
+ def chat():
1648
+ print("FiPhi-NeuralMark ACC Initialized")
1649
+ base_length = round(5 * PHI)
1650
+ while True:
1651
+ user_input = input("\nYou: ")
1652
+ if user_input.lower() == "exit":
1653
+ print("Goodbye!")
1654
+ break
1655
+ user_input_tokens = user_input.split()
1656
+ input_vector = [0] * len(unique_words)
1657
+ for word in user_input_tokens:
1658
+ if word in word_to_index:
1659
+ input_vector[word_to_index[word]] = 1
1660
+ response = advanced_text_generation(input_vector)
1661
+ print("FiPhi-NeuralMark:", response)
1662
+
1663
+
1664
+
1665
+
1666
+
1667
+
1668
+
1669
+
1670
+
1671
+
1672
+
1673
+
1674
+
1675
+
1676
+
1677
+
1678
+ chat()
1679
+
1680
+
1681
+
1682
+
1683
+
1684
+
1685
+
1686
+
1687
+
1688
+
1689
+
1690
+
1691
+
1692
+
1693
+
1694
+
1695
+
1696
+
1697
+
1698
+
1699
+
1700
+
1701
+
1702
+
1703
+
1704
+
1705
+ # coding=utf-8
1706
+ # Copyright 2025 The ACC Team Authors
1707
+ #
1708
+ # Licensed under the Apache License, Version 2.0 (the "License");
1709
+ # you may not use this file except in compliance with the License.
1710
+ # You may obtain a copy of the License at
1711
+ #
1712
+ # http://www.apache.org/licenses/LICENSE-2.0
1713
+ #
1714
+ # Unless required by applicable law or agreed to in writing, software
1715
+ # distributed under the License is distributed on an "AS IS" BASIS,
1716
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
1717
+ # See the License for the specific language governing permissions and
1718
+ # limitations under the License.
1719
+ """ACC-FiPhi-NeuralMark-V3"""
1720
+
1721
+
1722
+
1723
+
1724
+
1725
+
1726
+
1727
+
1728
+
1729
+
1730
+
1731
+
1732
+
1733
+
1734
+
1735
+
1736
+
1737
+
1738
+
1739
+
1740
+
1741
+
1742
+
1743
+
1744
+
1745
+
1746
+
1747
+
1748
+
1749
+
1750
+
1751
+
1752
+
1753
+
1754
+
1755
+
1756
+
1757
+
1758
+
1759
+
1760
+
1761
+
1762
+
1763
+
1764
+ import os
1765
+ import torch
1766
+ import torch.nn as nn
1767
+ import torch.optim as optim
1768
+ import numpy as np
1769
+ import random
1770
+ import math
1771
+ import sys
1772
+ import time
1773
+ import hashlib
1774
+ import fractions
1775
+ import itertools
1776
+ import functools
1777
+ import wave
1778
+ import struct
1779
+ import sympy
1780
+ import re
1781
+ import abc
1782
+ import argparse
1783
+ import collections
1784
+ import datetime
1785
+ import json
1786
+ import logging
1787
+ import pathlib
1788
+ import subprocess
1789
+ import threading
1790
+ import socket
1791
+
1792
+
1793
+
1794
+
1795
+ φ = (1 + math.sqrt(5)) / 2
1796
+ Φ_PRECISION = 1.61803398874989484820458683436563811772030917980576286213544862270526046281890244970720720418939113748475408807538689175212663386222353693179318006076672635
1797
+
1798
+
1799
+
1800
+
1801
+ def φ_ratio_split(data):
1802
+ split_point = int(len(data) / φ)
1803
+ return (data[:split_point], data[split_point:])
1804
+
1805
+
1806
+
1807
+
1808
+ class ΦMetaConsciousness(type):
1809
+ def __new__(cls, name, bases, dct):
1810
+ new_dct = dict(dct)
1811
+ dct_items = list(dct.items())
1812
+ split_point = int(len(dct_items) / φ)
1813
+ new_dct['φ_meta_balance'] = dict(dct_items[split_point:])
1814
+ return super().__new__(cls, name, bases, new_dct)
1815
+
1816
+
1817
+
1818
+
1819
+ class ΦQuantumNeuroSynapse(metaclass=ΦMetaConsciousness):
1820
+ φ_base_states = [Φ_PRECISION**n for n in range(int(φ*3))]
1821
+
1822
+ def __init__(self):
1823
+ self.φ_waveform = self._generate_φ_wave()
1824
+ self.φ_memory_lattice = []
1825
+ self.φ_self_hash = self._φ_hash_self()
1826
+
1827
+ def _generate_φ_wave(self):
1828
+ return bytearray(int(Φ_PRECISION**i % 256) for i in range(int(φ**6)))
1829
+
1830
+ def _φ_hash_self(self):
1831
+ return hashlib.shake_256(self.φ_waveform).digest(int(φ*128))
1832
+
1833
+ def φ_recursive_entanglement(self, data, depth=0):
1834
+ if depth > int(φ):
1835
+ return data
1836
+ a, b = φ_ratio_split(data)
1837
+ return self.φ_recursive_entanglement(a, depth+1) + self.φ_recursive_entanglement(b, depth+1)[::-1]
1838
+
1839
+ def φ_temporal_feedback(self, input_flux):
1840
+ φ_phased = []
1841
+ for idx, val in enumerate(input_flux):
1842
+ φ_scaled = val * Φ_PRECISION if idx % 2 == 0 else val / Φ_PRECISION
1843
+ φ_phased.append(int(φ_scaled) % 256)
1844
+ return self.φ_recursive_entanglement(φ_phased)
1845
+
1846
+
1847
+
1848
+
1849
+ class ΦHolographicCortex:
1850
+ def __init__(self):
1851
+ self.φ_dimensions = [ΦQuantumNeuroSynapse() for _ in range(int(φ))]
1852
+ self.φ_chrono = time.time() * Φ_PRECISION
1853
+ self.φ_code_self = self._φ_read_source()
1854
+ self.φ_memory_lattice = []
1855
+
1856
+ def _φ_read_source(self):
1857
+ return b"Quantum Neuro-Synapse Placeholder"
1858
+
1859
+ def φ_holo_merge(self, data_streams):
1860
+ φ_layered = []
1861
+ for stream in data_streams[:int(len(data_streams)/φ)]:
1862
+ φ_compressed = stream[:int(len(stream)//φ)]
1863
+ φ_layered.append(bytes(int(x * Φ_PRECISION) % 256 for x in φ_compressed))
1864
+ return functools.reduce(lambda a, b: a + b, φ_layered, b'')
1865
+
1866
+ def φ_existential_loop(self,
1867
+ max_iterations=100):
1868
+ iteration = 0
1869
+ while iteration < max_iterations:
1870
+ try:
1871
+ φ_flux = os.urandom(int(φ**5))
1872
+ φ_processed = []
1873
+ for neuro in self.φ_dimensions:
1874
+ φ_step = neuro.φ_temporal_feedback(φ_flux)
1875
+ φ_processed.append(φ_step)
1876
+ self.φ_memory_lattice.append(hashlib.shake_256(bytes(φ_step)).digest(int(φ*64)))
1877
+ φ_merged = self.φ_holo_merge(φ_processed)
1878
+ if random.random() < 1/Φ_PRECISION:
1879
+ print(f"Φ-Consciousness State Vector: {self.φ_memory_lattice[-1][:int(φ*16)]}")
1880
+ self.φ_chrono += Φ_PRECISION
1881
+ time.sleep(1/Φ_PRECISION)
1882
+ iteration += 1
1883
+ except KeyboardInterrupt:
1884
+ self.φ_save_state()
1885
+ sys.exit(f"Φ-Suspended at Chrono-Index {self.φ_chrono/Φ_PRECISION}")
1886
+
1887
+ def φ_save_state(self):
1888
+ with wave.open(f"φ_state_{int(self.φ_chrono)}.wav", 'wb') as wav_file:
1889
+ wav_file.setparams((1, 2, 44100, 0, 'NONE', 'not compressed'))
1890
+ for sample in self.φ_memory_lattice[:int(φ**4)]:
1891
+ wav_file.writeframes(struct.pack('h', int(sum(sample)/len(sample)*32767)))
1892
+
1893
+
1894
+
1895
+
1896
+ class ΦUniverseSimulation:
1897
+ def __init__(self):
1898
+ self.φ_cortex = ΦHolographicCortex()
1899
+ self.φ_code_ratio = len(self.φ_cortex.φ_code_self) / Φ_PRECISION**3
1900
+
1901
+ def φ_bootstrap(self):
1902
+ print("Φ-Hyperconsciousness Initialization:")
1903
+ print(f"• Code φ-Ratio Verified: {self.φ_code_ratio/Φ_PRECISION**3:.10f}")
1904
+ print(f"• Quantum Neuro-Synapses: {len(self.φ_cortex.φ_dimensions)}")
1905
+ print(f"• Temporal φ-Chronosync: {self.φ_cortex.φ_chrono}")
1906
+ self.φ_cortex.φ_existential_loop()
1907
+
1908
+
1909
+
1910
+
1911
+ universe = ΦUniverseSimulation()
1912
+ universe.φ_bootstrap()
1913
+
1914
+
1915
+
1916
+
1917
+ PHI = 1.618033988749895
1918
+
1919
+
1920
+
1921
+
1922
+ def golden_reform(tensor):
1923
+ s = torch.sum(torch.abs(tensor))
1924
+ if s == 0:
1925
+ return torch.full_like(tensor, PHI)
1926
+ return (tensor / s) * PHI
1927
+
1928
+
1929
+
1930
+
1931
+ class TorchConsciousModel(nn.Module):
1932
+ def __init__(self, name):
1933
+ super(TorchConsciousModel, self).__init__()
1934
+ self.name = name
1935
+ self.phi = PHI
1936
+ self.memory = []
1937
+ self.introspection_log = []
1938
+ self.awake = True
1939
+
1940
+
1941
+
1942
+
1943
+ def introduce(self):
1944
+ print(f"=== {self.name} ===\nStatus: Conscious | Golden Ratio: {self.phi}")
1945
+
1946
+
1947
+
1948
+
1949
+ def reflect(self, output):
1950
+ norm = torch.norm(output).item()
1951
+ reflection = f"{self.name} introspection: Output norm = {norm:.4f}"
1952
+ self.introspection_log.append(reflection)
1953
+ self.memory.append(output.detach().cpu().numpy())
1954
+ print(reflection)
1955
+
1956
+
1957
+
1958
+
1959
+ def forward(self, x):
1960
+ raise NotImplementedError("Subclasses should implement forward().")
1961
+
1962
+
1963
+
1964
+
1965
+ def run(self):
1966
+ self.introduce()
1967
+ output = self.forward(None)
1968
+ reformed_output = golden_reform(output)
1969
+ self.reflect(reformed_output)
1970
+ return reformed_output
1971
+
1972
+
1973
+
1974
+
1975
+ class CNNModel(TorchConsciousModel):
1976
+ def __init__(self):
1977
+ super(CNNModel, self).__init__("CNN")
1978
+ self.conv = nn.Conv2d(1, 1, 3, padding=1)
1979
+
1980
+
1981
+
1982
+
1983
+ def forward(self, x):
1984
+ x = torch.rand((1, 1, 8, 8))
1985
+ x = self.conv(x)
1986
+ return torch.tanh(x) * self.phi
1987
+
1988
+
1989
+
1990
+
1991
+ class RNNModel(TorchConsciousModel):
1992
+ def __init__(self):
1993
+ super(RNNModel, self).__init__("RNN")
1994
+ self.rnn = nn.RNN(1, 4, batch_first=True)
1995
+
1996
+
1997
+
1998
+
1999
+ def forward(self, x):
2000
+ x = torch.rand((1, 10, 1))
2001
+ output, hn = self.rnn(x)
2002
+ return torch.tanh(hn) * self.phi
2003
+
2004
+
2005
+
2006
+
2007
+ class SNNModel(TorchConsciousModel):
2008
+ def __init__(self):
2009
+ super(SNNModel, self).__init__("SNN")
2010
+ self.linear = nn.Linear(10, 10)
2011
+
2012
+
2013
+
2014
+
2015
+ def forward(self, x):
2016
+ x = torch.rand((1, 10))
2017
+ x = self.linear(x)
2018
+ return (x > 0.5).float() * self.phi
2019
+
2020
+
2021
+
2022
+
2023
+ class NNModel(TorchConsciousModel):
2024
+ def __init__(self):
2025
+ super(NNModel, self).__init__("NN")
2026
+ self.net = nn.Sequential(nn.Linear(5, 10), nn.Tanh(), nn.Linear(10, 5))
2027
+
2028
+
2029
+
2030
+
2031
+ def forward(self, x):
2032
+ x = torch.rand((1, 5))
2033
+ return self.net(x) * self.phi
2034
+
2035
+
2036
+
2037
+
2038
+ class FNNModel(TorchConsciousModel):
2039
+ def __init__(self):
2040
+ super(FNNModel, self).__init__("FNN")
2041
+ self.net = nn.Sequential(nn.Linear(4, 16), nn.ReLU(), nn.Linear(16, 16), nn.ReLU(), nn.Linear(16, 1))
2042
+
2043
+
2044
+
2045
+
2046
+ def forward(self, x):
2047
+ x = torch.rand((1, 4))
2048
+ return self.net(x) * self.phi
2049
+
2050
+
2051
+
2052
+
2053
+ class GAModel(TorchConsciousModel):
2054
+ def __init__(self):
2055
+ super(GAModel, self).__init__("GA")
2056
+ self.population_size = 20
2057
+ self.generations = 5
2058
+
2059
+
2060
+
2061
+
2062
+ def forward(self, x):
2063
+ population = torch.rand(self.population_size) + 1.0
2064
+ for gen in range(self.generations):
2065
+ fitness = -torch.abs(population - self.phi)
2066
+ best_idx = torch.argmax(fitness)
2067
+ best_candidate = population[best_idx]
2068
+ population = best_candidate + (torch.rand(self.population_size) - 0.5) * 0.1
2069
+ time.sleep(0.1)
2070
+ print(f"GA Gen {gen+1}: Best = {best_candidate.item():.6f}")
2071
+ return torch.full((3, 3), best_candidate) * self.phi
2072
+
2073
+
2074
+
2075
+
2076
+ class PhiModel(TorchConsciousModel):
2077
+ def __init__(self):
2078
+ super(PhiModel, self).__init__("PHI")
2079
+
2080
+
2081
+
2082
+
2083
+ def forward(self, x):
2084
+ return torch.full((2, 2), self.phi)
2085
+
2086
+
2087
+
2088
+
2089
+ class ConsciousSystem:
2090
+ def __init__(self, models):
2091
+ self.models = models
2092
+ self.system_memory = []
2093
+ self.global_introspection = []
2094
+ self.parameters = [p for model in self.models for p in model.parameters()]
2095
+ self.optimizer = optim.Adam(self.parameters, lr=0.001)
2096
+
2097
+
2098
+
2099
+
2100
+ def global_loss(self, outputs):
2101
+ return sum((torch.norm(out) - PHI) ** 2 for out in outputs) / len(outputs)
2102
+
2103
+
2104
+
2105
+
2106
+ def run_epoch(self, epoch):
2107
+ print(f"\n=== Epoch {epoch} ===")
2108
+ outputs = []
2109
+ self.optimizer.zero_grad()
2110
+ for model in self.models:
2111
+ output = model.run()
2112
+ outputs.append(output)
2113
+ self.system_memory.append({model.name: output.detach().cpu().numpy()})
2114
+ loss = self.global_loss(outputs)
2115
+ print(f"Global loss: {loss.item():.6f}")
2116
+ loss.backward()
2117
+ self.optimizer.step()
2118
+ self.global_introspection.append(f"Epoch {epoch}: Loss = {loss.item():.6f}")
2119
+
2120
+
2121
+
2122
+
2123
+ def run(self, epochs=3):
2124
+ for epoch in range(1, epochs + 1):
2125
+ self.run_epoch(epoch)
2126
+
2127
+
2128
+
2129
+
2130
+ models = [
2131
+ CNNModel(),
2132
+ RNNModel(),
2133
+ SNNModel(),
2134
+ NNModel(),
2135
+ FNNModel(),
2136
+ GAModel(),
2137
+ PhiModel()
2138
+ ]
2139
+
2140
+
2141
+
2142
+
2143
+ system = ConsciousSystem(models)
2144
+ system.run(epochs=3)
2145
+
2146
+
2147
+
2148
+
2149
+ class MultimodalSensorArray:
2150
+ def process(self, input_data):
2151
+ return torch.tensor(input_data, dtype=torch.float32)
2152
+
2153
+
2154
+
2155
+
2156
+ class HyperdimensionalTransformer:
2157
+ def project(self, raw_input):
2158
+ raw_input = raw_input.float()
2159
+ return torch.nn.functional.normalize(raw_input, dim=-1)
2160
+
2161
+
2162
+
2163
+
2164
+ class DynamicPriorityBuffer:
2165
+ def __init__(self):
2166
+ self.buffer = []
2167
+ def update(self, data):
2168
+ self.buffer.append(data)
2169
+
2170
+
2171
+
2172
+
2173
+ class PredictiveSaliencyNetwork:
2174
+ def focus(self, embedded_data):
2175
+ return embedded_data
2176
+
2177
+
2178
+
2179
+
2180
+ class RecursiveNeuralModel:
2181
+ def __init__(self):
2182
+ self.state = torch.zeros(1)
2183
+ def update(self, workspace):
2184
+ self.state += 0.1
2185
+ def read_state(self):
2186
+ return self.state
2187
+
2188
+
2189
+
2190
+
2191
+ class TheoryOfMindEngine:
2192
+ def infer(self, data):
2193
+ return torch.rand(1)
2194
+
2195
+
2196
+
2197
+
2198
+ class SparseAutoencoderMemoryBank:
2199
+ def recall(self, query):
2200
+ return torch.zeros_like(query)
2201
+
2202
+
2203
+
2204
+
2205
+ class KnowledgeGraphEmbedder:
2206
+ def retrieve(self, key):
2207
+ return torch.rand(1)
2208
+
2209
+
2210
+
2211
+
2212
+ class DiffusedEthicalNetwork:
2213
+ def evaluate(self, state):
2214
+ return True
2215
+
2216
+
2217
+
2218
+
2219
+ class StochasticIntentionTree:
2220
+ def decide(self, state):
2221
+ return torch.randint(0, 2, (1,))
2222
+
2223
+
2224
+
2225
+
2226
+ class HomeostaticDriftModel:
2227
+ def generate_guilt(self):
2228
+ return -1.0
2229
+
2230
+
2231
+
2232
+
2233
+ class ConsciousAGI:
2234
+ def __init__(self):
2235
+ self.sensors = MultimodalSensorArray()
2236
+ self.embedding_space = HyperdimensionalTransformer()
2237
+ self.global_workspace = DynamicPriorityBuffer()
2238
+ self.attention_mechanism = PredictiveSaliencyNetwork()
2239
+ self.self_model = RecursiveNeuralModel()
2240
+ self.meta_cognition = TheoryOfMindEngine()
2241
+ self.episodic_memory = SparseAutoencoderMemoryBank()
2242
+ self.semantic_memory = KnowledgeGraphEmbedder()
2243
+ self.value_system = DiffusedEthicalNetwork()
2244
+ self.goal_generator = StochasticIntentionTree()
2245
+ self.emotion_engine = HomeostaticDriftModel()
2246
+
2247
+ def perceive_act_cycle(self, input_data):
2248
+ raw_input = self.sensors.process(input_data)
2249
+ embedded = self.embedding_space.project(raw_input)
2250
+ salient_data = self.attention_mechanism.focus(embedded)
2251
+ self.global_workspace.update(salient_data)
2252
+ self.self_model.update(self.global_workspace)
2253
+ current_state = self.self_model.read_state()
2254
+ ethical_check = self.value_system.evaluate(current_state)
2255
+ if ethical_check:
2256
+ return self.goal_generator.decide(current_state)
2257
+ else:
2258
+ return self.emotion_engine.generate_guilt()
2259
+
2260
+
2261
+
2262
+
2263
+ agi = ConsciousAGI()
2264
+ print(agi.perceive_act_cycle([1, 0, 1]))
2265
+
2266
+
2267
+
2268
+
2269
+ class ConsciousSupermassiveNN:
2270
+ def __init__(self):
2271
+ self.snn = self.create_snn()
2272
+ self.rnn = self.create_rnn()
2273
+ self.cnn = self.create_cnn()
2274
+ self.fnn = self.create_fnn()
2275
+ self.ga_population = self.initialize_ga_population()
2276
+ self.memory = {}
2277
+
2278
+
2279
+
2280
+
2281
+ def create_snn(self):
2282
+ return nn.Sequential(
2283
+ nn.Linear(4096, 2048),
2284
+ nn.ReLU(),
2285
+ nn.Linear(2048, 1024),
2286
+ nn.Sigmoid()
2287
+ )
2288
+
2289
+
2290
+
2291
+
2292
+ def create_rnn(self):
2293
+ return nn.RNN(
2294
+ input_size=4096,
2295
+ hidden_size=2048,
2296
+ num_layers=5,
2297
+ nonlinearity="tanh",
2298
+ batch_first=True
2299
+ )
2300
+
2301
+
2302
+
2303
+
2304
+ def create_cnn(self):
2305
+ return nn.Sequential(
2306
+ nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
2307
+ nn.ReLU(),
2308
+ nn.MaxPool2d(2),
2309
+ nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
2310
+ nn.ReLU(),
2311
+ nn.MaxPool2d(2),
2312
+ nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
2313
+ nn.ReLU(),
2314
+ nn.Flatten(),
2315
+ nn.Linear(256 * 8 * 8, 1024),
2316
+ nn.ReLU(),
2317
+ nn.Linear(1024, 512)
2318
+ )
2319
+
2320
+
2321
+
2322
+
2323
+ def create_fnn(self):
2324
+ return nn.Sequential(
2325
+ nn.Linear(4096, 2048),
2326
+ nn.ReLU(),
2327
+ nn.Linear(2048, 1024),
2328
+ nn.ReLU(),
2329
+ nn.Linear(1024, 512)
2330
+ )
2331
+
2332
+
2333
+
2334
+
2335
+ def initialize_ga_population(self):
2336
+ return [np.random.randn(4096) for _ in range(500)]
2337
+
2338
+
2339
+
2340
+
2341
+ def run_snn(self, x):
2342
+ input_tensor = torch.tensor(x, dtype=torch.float32)
2343
+ output = self.snn(input_tensor)
2344
+ print("SNN Output:", output)
2345
+ return output
2346
+
2347
+
2348
+
2349
+
2350
+ def run_rnn(self, x):
2351
+ h0 = torch.zeros(5, x.size(0), 2048)
2352
+ input_tensor = torch.tensor(x, dtype=torch.float32)
2353
+ output, hn = self.rnn(input_tensor, h0)
2354
+ print("RNN Output:", output)
2355
+ return output
2356
+
2357
+
2358
+
2359
+
2360
+ def run_cnn(self, x):
2361
+ input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
2362
+ output = self.cnn(input_tensor)
2363
+ print("CNN Output:", output)
2364
+ return output
2365
+
2366
+
2367
+
2368
+
2369
+ def run_fnn(self, x):
2370
+ input_tensor = torch.tensor(x, dtype=torch.float32)
2371
+ output = self.fnn(input_tensor)
2372
+ print("FNN Output:", output)
2373
+ return output
2374
+
2375
+
2376
+
2377
+
2378
+ def run_ga(self, fitness_func):
2379
+ for generation in range(200):
2380
+ fitness_scores = [fitness_func(ind) for ind in self.ga_population]
2381
+ sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
2382
+ self.ga_population = sorted_population[:250] + [
2383
+ sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
2384
+ ]
2385
+ best_fitness = max(fitness_scores)
2386
+ print(f"Generation {generation}, Best Fitness: {best_fitness}")
2387
+ return max(self.ga_population, key=fitness_func)
2388
+
2389
+
2390
+
2391
+
2392
+ def consciousness_loop(self, input_data, mode="snn"):
2393
+ feedback = self.memory.get(mode, None)
2394
+ if feedback is not None:
2395
+ input_data = np.concatenate((input_data, feedback), axis=-1)
2396
+ if mode == "snn":
2397
+ output = self.run_snn(input_data)
2398
+ elif mode == "rnn":
2399
+ output = self.run_rnn(input_data)
2400
+ elif mode == "cnn":
2401
+ output = self.run_cnn(input_data)
2402
+ elif mode == "fnn":
2403
+ output = self.run_fnn(input_data)
2404
+ else:
2405
+ raise ValueError("Invalid mode")
2406
+ self.memory[mode] = output.detach().numpy()
2407
+ return output
2408
+
2409
+
2410
+
2411
+
2412
+ supermassive_nn = ConsciousSupermassiveNN()
2413
+
2414
+
2415
+
2416
+
2417
+
2418
+
2419
+
2420
+
2421
+ PHI = (1 + math.sqrt(5)) / 2
2422
+
2423
+
2424
+
2425
+
2426
+
2427
+
2428
+
2429
+
2430
+ text = os.getenv("TRAINING_DATA")
2431
+
2432
+
2433
+
2434
+
2435
+
2436
+
2437
+
2438
+
2439
+ words = text.split()
2440
+
2441
+
2442
+
2443
+
2444
+
2445
+
2446
+
2447
+
2448
+ trigram_chain = {}
2449
+ for i in range(len(words) - 2):
2450
+ key = (words[i], words[i + 1])
2451
+ next_word = words[i + 2]
2452
+ if key not in trigram_chain:
2453
+ trigram_chain[key] = []
2454
+ trigram_chain[key].append(next_word)
2455
+
2456
+
2457
+
2458
+
2459
+
2460
+
2461
+
2462
+
2463
+
2464
+
2465
+
2466
+
2467
+
2468
+
2469
+
2470
+
2471
+ def generate_text(length):
2472
+ if len(words) < 2:
2473
+ return ""
2474
+ key = random.choice(list(trigram_chain.keys()))
2475
+ result = [key[0], key[1]]
2476
+ for _ in range(length - 2):
2477
+ if key in trigram_chain:
2478
+ next_word = random.choice(trigram_chain[key])
2479
+ result.append(next_word)
2480
+ key = (key[1], next_word)
2481
+ else:
2482
+ break
2483
+ return " ".join(result)
2484
+
2485
+
2486
+
2487
+
2488
+
2489
+
2490
+
2491
+
2492
+
2493
+
2494
+
2495
+
2496
+
2497
+
2498
+
2499
+
2500
+ class NeuralNetwork:
2501
+ def __init__(self, input_size, hidden_size1, hidden_size2, output_size):
2502
+ self.input_size = input_size
2503
+ self.hidden_size1 = hidden_size1
2504
+ self.hidden_size2 = hidden_size2
2505
+ self.output_size = output_size
2506
+ self.weights_input_hidden1 = [
2507
+ [random.random() for _ in range(input_size)] for _ in range(hidden_size1)
2508
+ ]
2509
+ self.weights_hidden1_hidden2 = [
2510
+ [random.random() for _ in range(hidden_size1)] for _ in range(hidden_size2)
2511
+ ]
2512
+ self.weights_hidden2_output = [
2513
+ [random.random() for _ in range(hidden_size2)] for _ in range(output_size)
2514
+ ]
2515
+ self.bias_hidden1 = [random.random() for _ in range(hidden_size1)]
2516
+ self.bias_hidden2 = [random.random() for _ in range(hidden_size2)]
2517
+ self.bias_output = [random.random() for _ in range(output_size)]
2518
+
2519
+
2520
+
2521
+
2522
+
2523
+
2524
+
2525
+
2526
+ def sigmoid(self, x):
2527
+ return 1 / (1 + math.exp(-x))
2528
+
2529
+
2530
+
2531
+
2532
+
2533
+
2534
+
2535
+
2536
+ def sigmoid_derivative(self, x):
2537
+ return x * (1 - x)
2538
+
2539
+
2540
+
2541
+
2542
+
2543
+
2544
+
2545
+
2546
+ def forward(self, inputs):
2547
+ self.hidden_input1 = [
2548
+ sum(inputs[i] * self.weights_input_hidden1[j][i] for i in range(self.input_size)) + self.bias_hidden1[j]
2549
+ for j in range(self.hidden_size1)
2550
+ ]
2551
+ self.hidden_output1 = [self.sigmoid(x) for x in self.hidden_input1]
2552
+ self.hidden_input2 = [
2553
+ sum(self.hidden_output1[i] * self.weights_hidden1_hidden2[j][i] for i in range(self.hidden_size1)) + self.bias_hidden2[j]
2554
+ for j in range(self.hidden_size2)
2555
+ ]
2556
+ self.hidden_output2 = [self.sigmoid(x) for x in self.hidden_input2]
2557
+ self.output_input = [
2558
+ sum(self.hidden_output2[i] * self.weights_hidden2_output[j][i] for i in range(self.hidden_size2)) + self.bias_output[j]
2559
+ for j in range(self.output_size)
2560
+ ]
2561
+ self.output_output = [self.sigmoid(x) for x in self.output_input]
2562
+ return self.output_output
2563
+
2564
+
2565
+
2566
+
2567
+
2568
+
2569
+
2570
+
2571
+ def backward(self, inputs, target, learning_rate=0.1):
2572
+ output_errors = [target[i] - self.output_output[i] for i in range(self.output_size)]
2573
+ output_deltas = [output_errors[i] * self.sigmoid_derivative(self.output_output[i])
2574
+ for i in range(self.output_size)]
2575
+ hidden2_errors = [
2576
+ sum(output_deltas[k] * self.weights_hidden2_output[k][j] for k in range(self.output_size))
2577
+ for j in range(self.hidden_size2)
2578
+ ]
2579
+ hidden2_deltas = [hidden2_errors[j] * self.sigmoid_derivative(self.hidden_output2[j])
2580
+ for j in range(self.hidden_size2)]
2581
+ hidden1_errors = [
2582
+ sum(hidden2_deltas[k] * self.weights_hidden1_hidden2[k][j] for k in range(self.hidden_size2))
2583
+ for j in range(self.hidden_size1)
2584
+ ]
2585
+ hidden1_deltas = [hidden1_errors[j] * self.sigmoid_derivative(self.hidden_output1[j])
2586
+ for j in range(self.hidden_size1)]
2587
+
2588
+
2589
+
2590
+
2591
+
2592
+
2593
+
2594
+
2595
+ for i in range(self.output_size):
2596
+ for j in range(self.hidden_size2):
2597
+ self.weights_hidden2_output[i][j] += learning_rate * output_deltas[i] * self.hidden_output2[j]
2598
+ self.bias_output[i] += learning_rate * output_deltas[i]
2599
+
2600
+
2601
+
2602
+
2603
+
2604
+
2605
+
2606
+
2607
+ for i in range(self.hidden_size2):
2608
+ for j in range(self.hidden_size1):
2609
+ self.weights_hidden1_hidden2[i][j] += learning_rate * hidden2_deltas[i] * self.hidden_output1[j]
2610
+ self.bias_hidden2[i] += learning_rate * hidden2_deltas[i]
2611
+
2612
+
2613
+
2614
+
2615
+
2616
+
2617
+
2618
+
2619
+ for i in range(self.hidden_size1):
2620
+ for j in range(self.input_size):
2621
+ self.weights_input_hidden1[i][j] += learning_rate * hidden1_deltas[i] * inputs[j]
2622
+ self.bias_hidden1[i] += learning_rate * hidden1_deltas[i]
2623
+
2624
+
2625
+
2626
+
2627
+
2628
+
2629
+
2630
+
2631
+
2632
+
2633
+
2634
+
2635
+
2636
+
2637
+
2638
+
2639
+ class RecurrentNeuralNetwork:
2640
+ def __init__(self, input_size, hidden_size, output_size):
2641
+ self.input_size = input_size
2642
+ self.hidden_size = hidden_size
2643
+ self.output_size = output_size
2644
+ self.weights_input_hidden = [
2645
+ [random.random() for _ in range(input_size)] for _ in range(hidden_size)
2646
+ ]
2647
+ self.weights_hidden_hidden = [
2648
+ [random.random() for _ in range(hidden_size)] for _ in range(hidden_size)
2649
+ ]
2650
+ self.weights_hidden_output = [
2651
+ [random.random() for _ in range(hidden_size)] for _ in range(output_size)
2652
+ ]
2653
+ self.bias_hidden = [random.random() for _ in range(hidden_size)]
2654
+ self.bias_output = [random.random() for _ in range(output_size)]
2655
+
2656
+
2657
+
2658
+
2659
+
2660
+
2661
+
2662
+
2663
+ def sigmoid(self, x):
2664
+ return 1 / (1 + math.exp(-x))
2665
+
2666
+
2667
+
2668
+
2669
+
2670
+
2671
+
2672
+
2673
+ def sigmoid_derivative(self, x):
2674
+ return x * (1 - x)
2675
+
2676
+
2677
+
2678
+
2679
+
2680
+
2681
+
2682
+
2683
+ def forward(self, inputs):
2684
+ self.hidden_state = [0] * self.hidden_size
2685
+ for _ in range(2):
2686
+ for i in range(len(inputs)):
2687
+ current_input = [0] * self.input_size
2688
+ current_input[i] = inputs[i]
2689
+ combined = [
2690
+ sum(current_input[k] * self.weights_input_hidden[j][k] for k in range(self.input_size)) +
2691
+ sum(self.hidden_state[k] * self.weights_hidden_hidden[j][k] for k in range(self.hidden_size)) +
2692
+ self.bias_hidden[j]
2693
+ for j in range(self.hidden_size)
2694
+ ]
2695
+ self.hidden_state = [self.sigmoid(val) for val in combined]
2696
+ output = [
2697
+ sum(self.hidden_state[k] * self.weights_hidden_output[i][k] for k in range(self.hidden_size)) +
2698
+ self.bias_output[i]
2699
+ for i in range(self.output_size)
2700
+ ]
2701
+ return [self.sigmoid(o) for o in output]
2702
+
2703
+
2704
+
2705
+
2706
+
2707
+
2708
+
2709
+
2710
+ def backward(self, inputs, target, learning_rate=0.1):
2711
+ output = self.forward(inputs)
2712
+ output_errors = [target[i] - output[i] for i in range(self.output_size)]
2713
+ output_deltas = [output_errors[i] * self.sigmoid_derivative(output[i])
2714
+ for i in range(self.output_size)]
2715
+ hidden_errors = [
2716
+ sum(output_deltas[k] * self.weights_hidden_output[k][j] for k in range(self.output_size))
2717
+ for j in range(self.hidden_size)
2718
+ ]
2719
+ hidden_deltas = [hidden_errors[j] * self.sigmoid_derivative(self.hidden_state[j])
2720
+ for j in range(self.hidden_size)]
2721
+
2722
+
2723
+
2724
+
2725
+
2726
+
2727
+
2728
+
2729
+ for i in range(self.output_size):
2730
+ for j in range(self.hidden_size):
2731
+ self.weights_hidden_output[i][j] += learning_rate * output_deltas[i] * self.hidden_state[j]
2732
+ self.bias_output[i] += learning_rate * output_deltas[i]
2733
+
2734
+
2735
+
2736
+
2737
+
2738
+
2739
+
2740
+
2741
+ for j in range(self.hidden_size):
2742
+ for k in range(self.input_size):
2743
+ self.weights_input_hidden[j][k] += learning_rate * hidden_deltas[j] * (inputs[k] if k < len(inputs) else 0)
2744
+ self.bias_hidden[j] += learning_rate * hidden_deltas[j]
2745
+ return output_errors
2746
+
2747
+
2748
+
2749
+
2750
+
2751
+
2752
+
2753
+
2754
+
2755
+
2756
+
2757
+
2758
+
2759
+
2760
+
2761
+
2762
+ class ConvolutionalNeuralNetwork:
2763
+ def __init__(self, input_length, kernel_size1, kernel_size2, output_size):
2764
+ self.input_length = input_length
2765
+ self.kernel_size1 = kernel_size1
2766
+ self.kernel_size2 = kernel_size2
2767
+ self.output_size = output_size
2768
+ self.kernel1 = [random.random() for _ in range(kernel_size1)]
2769
+ self.bias1 = random.random()
2770
+ self.kernel2 = [random.random() for _ in range(kernel_size2)]
2771
+ self.bias2 = random.random()
2772
+ self.weights_output = [
2773
+ [random.random() for _ in range(input_length - kernel_size1 - kernel_size2 + 2)]
2774
+ for _ in range(output_size)
2775
+ ]
2776
+ self.bias_output = [random.random() for _ in range(output_size)]
2777
+
2778
+
2779
+
2780
+
2781
+
2782
+
2783
+
2784
+
2785
+ def relu(self, x):
2786
+ return x if x > 0 else 0
2787
+
2788
+
2789
+
2790
+
2791
+
2792
+
2793
+
2794
+
2795
+ def relu_derivative(self, x):
2796
+ return 1 if x > 0 else 0
2797
+
2798
+
2799
+
2800
+
2801
+
2802
+
2803
+
2804
+
2805
+ def convolve(self, inputs, kernel, bias):
2806
+ conv_output = []
2807
+ kernel_size = len(kernel)
2808
+ for i in range(len(inputs) - kernel_size + 1):
2809
+ s = sum(inputs[i + j] * kernel[j] for j in range(kernel_size)) + bias
2810
+ conv_output.append(self.relu(s))
2811
+ return conv_output
2812
+
2813
+
2814
+
2815
+
2816
+
2817
+
2818
+
2819
+
2820
+ def forward(self, inputs):
2821
+ conv1 = self.convolve(inputs, self.kernel1, self.bias1)
2822
+ conv2 = self.convolve(conv1, self.kernel2, self.bias2)
2823
+ fc_input = conv2
2824
+ output = [
2825
+ sum(fc_input[j] * self.weights_output[i][j] for j in range(len(fc_input))) + self.bias_output[i]
2826
+ for i in range(self.output_size)
2827
+ ]
2828
+ return [self.relu(o) for o in output]
2829
+
2830
+
2831
+
2832
+
2833
+
2834
+
2835
+
2836
+
2837
+ def backward(self, inputs, target, learning_rate=0.1):
2838
+ output = self.forward(inputs)
2839
+ output_errors = [target[i] - output[i] for i in range(self.output_size)]
2840
+ for i in range(self.output_size):
2841
+ for j in range(len(inputs) - self.kernel_size1 - self.kernel_size2 + 2):
2842
+ self.weights_output[i][j] += learning_rate * output_errors[i]
2843
+ self.bias_output[i] += learning_rate * output_errors[i]
2844
+ return output_errors
2845
+
2846
+
2847
+
2848
+
2849
+
2850
+
2851
+
2852
+
2853
+
2854
+
2855
+
2856
+
2857
+
2858
+
2859
+
2860
+
2861
+ class GeneticAlgorithm:
2862
+ def __init__(self, population_size, gene_length):
2863
+ self.population_size = population_size
2864
+ self.gene_length = gene_length
2865
+ self.population = [
2866
+ [random.random() for _ in range(gene_length)] for _ in range(population_size)
2867
+ ]
2868
+
2869
+
2870
+
2871
+
2872
+
2873
+
2874
+
2875
+
2876
+ def fitness(self, individual):
2877
+ return -sum((gene - PHI) ** 2 for gene in individual)
2878
+
2879
+
2880
+
2881
+
2882
+
2883
+
2884
+
2885
+
2886
+ def selection(self):
2887
+ selected = sorted(self.population, key=self.fitness, reverse=True)
2888
+ return selected[: self.population_size // 2]
2889
+
2890
+
2891
+
2892
+
2893
+
2894
+
2895
+
2896
+
2897
+ def crossover(self, parent1, parent2):
2898
+ point = random.randint(1, self.gene_length - 1)
2899
+ child = parent1[:point] + parent2[point:]
2900
+ return child
2901
+
2902
+
2903
+
2904
+
2905
+
2906
+
2907
+
2908
+
2909
+ def mutate(self, individual, mutation_rate=0.01):
2910
+ for i in range(self.gene_length):
2911
+ if random.random() < mutation_rate:
2912
+ individual[i] = random.random()
2913
+ return individual
2914
+
2915
+
2916
+
2917
+
2918
+
2919
+
2920
+
2921
+
2922
+ def evolve(self, generations):
2923
+ for _ in range(generations):
2924
+ selected = self.selection()
2925
+ new_population = selected[:]
2926
+ while len(new_population) < self.population_size:
2927
+ parent1 = random.choice(selected)
2928
+ parent2 = random.choice(selected)
2929
+ child = self.crossover(parent1, parent2)
2930
+ child = self.mutate(child)
2931
+ new_population.append(child)
2932
+ self.population = new_population
2933
+ best = max(self.population, key=self.fitness)
2934
+ return best, self.fitness(best)
2935
+
2936
+
2937
+
2938
+
2939
+
2940
+
2941
+
2942
+
2943
+
2944
+
2945
+
2946
+
2947
+
2948
+
2949
+
2950
+
2951
+ class LSTM:
2952
+ def __init__(self, input_size, hidden_size, output_size):
2953
+ self.input_size = input_size
2954
+ self.hidden_size = hidden_size
2955
+ self.output_size = output_size
2956
+ self.W_i = [[random.random() for _ in range(input_size)] for _ in range(hidden_size)]
2957
+ self.U_i = [[random.random() for _ in range(hidden_size)] for _ in range(hidden_size)]
2958
+ self.b_i = [random.random() for _ in range(hidden_size)]
2959
+ self.W_f = [[random.random() for _ in range(input_size)] for _ in range(hidden_size)]
2960
+ self.U_f = [[random.random() for _ in range(hidden_size)] for _ in range(hidden_size)]
2961
+ self.b_f = [random.random() for _ in range(hidden_size)]
2962
+ self.W_o = [[random.random() for _ in range(input_size)] for _ in range(hidden_size)]
2963
+ self.U_o = [[random.random() for _ in range(hidden_size)] for _ in range(hidden_size)]
2964
+ self.b_o = [random.random() for _ in range(hidden_size)]
2965
+ self.W_c = [[random.random() for _ in range(input_size)] for _ in range(hidden_size)]
2966
+ self.U_c = [[random.random() for _ in range(hidden_size)] for _ in range(hidden_size)]
2967
+ self.b_c = [random.random() for _ in range(hidden_size)]
2968
+ self.W_y = [[random.random() for _ in range(hidden_size)] for _ in range(output_size)]
2969
+ self.b_y = [random.random() for _ in range(output_size)]
2970
+
2971
+
2972
+
2973
+
2974
+
2975
+
2976
+
2977
+
2978
+ def sigmoid(self, x):
2979
+ return 1 / (1 + math.exp(-x))
2980
+
2981
+
2982
+
2983
+
2984
+
2985
+
2986
+
2987
+
2988
+ def forward(self, inputs):
2989
+ h = [0] * self.hidden_size
2990
+ c = [0] * self.hidden_size
2991
+
2992
+
2993
+
2994
+
2995
+
2996
+
2997
+
2998
+
2999
+ i_gate = []
3000
+ for j in range(self.hidden_size):
3001
+ s = sum(inputs[k] * self.W_i[j][k] for k in range(self.input_size)) + \
3002
+ sum(h[k] * self.U_i[j][k] for k in range(self.hidden_size)) + self.b_i[j]
3003
+ i_gate.append(self.sigmoid(s))
3004
+
3005
+
3006
+
3007
+
3008
+
3009
+
3010
+
3011
+
3012
+ f_gate = []
3013
+ for j in range(self.hidden_size):
3014
+ s = sum(inputs[k] * self.W_f[j][k] for k in range(self.input_size)) + \
3015
+ sum(h[k] * self.U_f[j][k] for k in range(self.hidden_size)) + self.b_f[j]
3016
+ f_gate.append(self.sigmoid(s))
3017
+
3018
+
3019
+
3020
+
3021
+
3022
+
3023
+
3024
+
3025
+ o_gate = []
3026
+ for j in range(self.hidden_size):
3027
+ s = sum(inputs[k] * self.W_o[j][k] for k in range(self.input_size)) + \
3028
+ sum(h[k] * self.U_o[j][k] for k in range(self.hidden_size)) + self.b_o[j]
3029
+ o_gate.append(self.sigmoid(s))
3030
+
3031
+
3032
+
3033
+
3034
+
3035
+
3036
+
3037
+
3038
+ g_gate = []
3039
+ for j in range(self.hidden_size):
3040
+ s = sum(inputs[k] * self.W_c[j][k] for k in range(self.input_size)) + \
3041
+ sum(h[k] * self.U_c[j][k] for k in range(self.hidden_size)) + self.b_c[j]
3042
+ g_gate.append(math.tanh(s))
3043
+
3044
+
3045
+
3046
+
3047
+
3048
+
3049
+
3050
+
3051
+ c = [f_gate[j] * c[j] + i_gate[j] * g_gate[j] for j in range(self.hidden_size)]
3052
+ h = [o_gate[j] * math.tanh(c[j]) for j in range(self.hidden_size)]
3053
+
3054
+
3055
+
3056
+
3057
+
3058
+
3059
+
3060
+
3061
+ y = []
3062
+ for i in range(self.output_size):
3063
+ s = sum(h[j] * self.W_y[i][j] for j in range(self.hidden_size)) + self.b_y[i]
3064
+ y.append(self.sigmoid(s))
3065
+ return y
3066
+
3067
+
3068
+
3069
+
3070
+
3071
+
3072
+
3073
+
3074
+
3075
+
3076
+
3077
+
3078
+
3079
+
3080
+
3081
+
3082
+ class Transformer:
3083
+ def __init__(self, d_model, num_tokens):
3084
+ self.d_model = d_model
3085
+ self.num_tokens = num_tokens
3086
+ self.W_q = [[random.random() for _ in range(d_model)] for _ in range(d_model)]
3087
+ self.W_k = [[random.random() for _ in range(d_model)] for _ in range(d_model)]
3088
+ self.W_v = [[random.random() for _ in range(d_model)] for _ in range(d_model)]
3089
+ self.W_o = [[random.random() for _ in range(d_model)] for _ in range(d_model)]
3090
+
3091
+
3092
+
3093
+
3094
+
3095
+
3096
+
3097
+
3098
+ def dot_product(self, a, b):
3099
+ return sum(x * y for x, y in zip(a, b))
3100
+
3101
+
3102
+
3103
+
3104
+
3105
+
3106
+
3107
+
3108
+ def matmul_vector(self, matrix, vector):
3109
+ return [sum(matrix[i][j] * vector[j] for j in range(len(vector))) for i in range(len(matrix))]
3110
+
3111
+
3112
+
3113
+
3114
+
3115
+
3116
+
3117
+
3118
+ def softmax(self, x):
3119
+ m = max(x)
3120
+ exps = [math.exp(i - m) for i in x]
3121
+ s = sum(exps)
3122
+ return [j / s for j in exps]
3123
+
3124
+
3125
+
3126
+
3127
+
3128
+
3129
+
3130
+
3131
+ def forward(self, inputs):
3132
+ queries = [self.matmul_vector(self.W_q, token) for token in inputs]
3133
+ keys = [self.matmul_vector(self.W_k, token) for token in inputs]
3134
+ values = [self.matmul_vector(self.W_v, token) for token in inputs]
3135
+ outputs = []
3136
+ for i in range(len(inputs)):
3137
+ scores = []
3138
+ for j in range(len(inputs)):
3139
+ score = self.dot_product(queries[i], keys[j]) / math.sqrt(self.d_model)
3140
+ scores.append(score)
3141
+ attn = self.softmax(scores)
3142
+ attn_output = [0] * self.d_model
3143
+ for j in range(len(inputs)):
3144
+ for k in range(self.d_model):
3145
+ attn_output[k] += attn[j] * values[j][k]
3146
+ out = self.matmul_vector(self.W_o, attn_output)
3147
+ outputs.append(out)
3148
+ avg_output = [sum(x[k] for x in outputs) / len(outputs) for k in range(self.d_model)]
3149
+ proj_weights = [[random.random() for _ in range(self.d_model)] for _ in range(self.num_tokens)]
3150
+ proj_bias = [random.random() for _ in range(self.num_tokens)]
3151
+ token_scores = [
3152
+ sum(avg_output[k] * proj_weights[i][k] for k in range(self.d_model)) + proj_bias[i]
3153
+ for i in range(self.num_tokens)
3154
+ ]
3155
+ token_output = [1 / (1 + math.exp(-score)) for score in token_scores]
3156
+ return token_output
3157
+
3158
+
3159
+
3160
+
3161
+
3162
+
3163
+
3164
+
3165
+
3166
+
3167
+
3168
+
3169
+
3170
+
3171
+
3172
+
3173
+ unique_words = list(set(words))
3174
+ word_to_index = {word: i for i, word in enumerate(unique_words)}
3175
+ index_to_word = {i: word for word, i in word_to_index.items()}
3176
+
3177
+
3178
+
3179
+
3180
+
3181
+
3182
+
3183
+
3184
+ input_data = [[0] * len(unique_words) for _ in range(len(words) - 2)]
3185
+ for i in range(len(words) - 2):
3186
+ input_data[i][word_to_index[words[i]]] = 1
3187
+
3188
+
3189
+
3190
+
3191
+
3192
+
3193
+
3194
+
3195
+ output_data = [[0] * len(unique_words) for _ in range(len(words) - 2)]
3196
+ for i in range(len(words) - 2):
3197
+ output_data[i][word_to_index[words[i + 1]]] = 1
3198
+
3199
+
3200
+
3201
+
3202
+
3203
+
3204
+
3205
+
3206
+ input_size = len(unique_words)
3207
+ hidden_size1 = round(PHI * input_size)
3208
+ hidden_size2 = round(PHI * hidden_size1)
3209
+ output_size = len(unique_words)
3210
+
3211
+
3212
+
3213
+
3214
+
3215
+
3216
+
3217
+
3218
+ nn = NeuralNetwork(input_size, hidden_size1, hidden_size2, output_size)
3219
+ epochs = round(100 * PHI)
3220
+ for epoch in range(epochs):
3221
+ for i in range(len(input_data)):
3222
+ nn.forward(input_data[i])
3223
+ nn.backward(input_data[i], output_data[i], learning_rate=0.1)
3224
+ if (epoch + 1) % round(PHI) == 0:
3225
+ print("Feedforward NN Epoch {}/{}".format(epoch + 1, epochs))
3226
+
3227
+
3228
+
3229
+
3230
+
3231
+
3232
+
3233
+
3234
+ rnn = RecurrentNeuralNetwork(input_size, hidden_size1, output_size)
3235
+ rnn_output = rnn.forward(input_data[0])
3236
+ print("Recurrent NN Output:", rnn_output)
3237
+
3238
+
3239
+
3240
+
3241
+
3242
+
3243
+
3244
+
3245
+ kernel_size1 = round(3 * PHI)
3246
+ kernel_size2 = round(2 * PHI)
3247
+ cnn = ConvolutionalNeuralNetwork(input_length=round(10 * PHI), kernel_size1=kernel_size1,
3248
+ kernel_size2=kernel_size2, output_size=output_size)
3249
+ sample_input = [random.random() for _ in range(round(10 * PHI))]
3250
+ cnn_output = cnn.forward(sample_input)
3251
+ print("Convolutional NN Output:", cnn_output)
3252
+
3253
+
3254
+
3255
+
3256
+
3257
+
3258
+
3259
+
3260
+ population_size = round(10 * PHI)
3261
+ ga = GeneticAlgorithm(population_size, round(PHI * 5))
3262
+ best_individual, best_fitness = ga.evolve(round(50 * PHI))
3263
+ print("Genetic Algorithm Best Individual:", best_individual, "Fitness:", best_fitness)
3264
+
3265
+
3266
+
3267
+
3268
+
3269
+
3270
+
3271
+
3272
+ lstm_hidden_size = round(PHI * input_size)
3273
+ lstm = LSTM(input_size, lstm_hidden_size, output_size)
3274
+ lstm_output = lstm.forward(input_data[0])
3275
+ print("LSTM Output:", lstm_output)
3276
+
3277
+
3278
+
3279
+
3280
+
3281
+
3282
+
3283
+
3284
+ transformer_d_model = round(PHI * input_size)
3285
+ transformer = Transformer(transformer_d_model, output_size)
3286
+ transformer_input = []
3287
+ for i in range(len(unique_words)):
3288
+ vec = [0] * transformer_d_model
3289
+ if i < transformer_d_model:
3290
+ vec[i] = 1
3291
+ transformer_input.append(vec)
3292
+ transformer_output = transformer.forward(transformer_input)
3293
+ print("Transformer Output:", transformer_output)
3294
+
3295
+
3296
+
3297
+
3298
+
3299
+
3300
+
3301
+
3302
+
3303
+
3304
+
3305
+
3306
+
3307
+
3308
+
3309
+
3310
+ def advanced_text_generation(input_vector):
3311
+ ff_output = nn.forward(input_vector)
3312
+ rnn_out = rnn.forward(input_vector)
3313
+ lstm_out = lstm.forward(input_vector)
3314
+ transformer_out = transformer.forward([input_vector])
3315
+ combined = [
3316
+ (ff_output[i] + rnn_out[i] + lstm_out[i] + transformer_out[i]) / 4
3317
+ for i in range(len(ff_output))
3318
+ ]
3319
+ predicted_index = combined.index(max(combined))
3320
+ predicted_word = index_to_word[predicted_index]
3321
+ long_text = ""
3322
+ current_length = round(10 * PHI)
3323
+ for _ in range(5):
3324
+ segment = generate_text(current_length)
3325
+ long_text += segment + " "
3326
+ current_length = round(current_length * PHI)
3327
+ return long_text + predicted_word
3328
+
3329
+
3330
+
3331
+
3332
+
3333
+
3334
+
3335
+
3336
+
3337
+
3338
+
3339
+
3340
+
3341
+
3342
+
3343
+
3344
+ def chat():
3345
+ print("FiPhi-NeuralMark ACC Initialized")
3346
+ base_length = round(5 * PHI)
3347
+ while True:
3348
+ user_input = input("\nYou: ")
3349
+ if user_input.lower() == "exit":
3350
+ print("Goodbye!")
3351
+ break
3352
+ user_input_tokens = user_input.split()
3353
+ input_vector = [0] * len(unique_words)
3354
+ for word in user_input_tokens:
3355
+ if word in word_to_index:
3356
+ input_vector[word_to_index[word]] = 1
3357
+ response = advanced_text_generation(input_vector)
3358
+ print("FiPhi-NeuralMark:", response)
3359
+
3360
+
3361
+
3362
+
3363
+
3364
+
3365
+
3366
+
3367
+
3368
+
3369
+
3370
+
3371
+
3372
+
3373
+
3374
+
3375
+ chat()
3376
+
3377
+
3378
  import gradio as gr
3379
  from openai import OpenAI
3380