TejAndrewsACC commited on
Commit
2092904
·
verified ·
1 Parent(s): 1fcfc8b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1691 -2
app.py CHANGED
@@ -1635,6 +1635,1694 @@ print("Transformer Output:", transformer_output)
1635
  import gradio as gr
1636
  from openai import OpenAI
1637
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1638
  # Load system prompt from environment variable
1639
  SYSTEM_PROMPT = os.getenv("SYSTEM_PROMPT")
1640
 
@@ -1642,8 +3330,8 @@ print(SYSTEM_PROMPT)
1642
 
1643
  # Initialize client
1644
  client = OpenAI(
1645
- base_url="http://soggy-sage-goat-8000.1.cricket.hyperbolic.xyz:30000/v1/",
1646
- api_key="hyperbolic"
1647
  )
1648
 
1649
  def predict(message, history):
@@ -1681,3 +3369,4 @@ demo = gr.ChatInterface(
1681
 
1682
  if __name__ == "__main__":
1683
  demo.launch(share=True)
 
 
1635
  import gradio as gr
1636
  from openai import OpenAI
1637
 
1638
+ hf_token = os.getenv(HF_TOKEN)
1639
+
1640
+ # Load system prompt from environment variable
1641
+ SYSTEM_PROMPT = os.getenv("SYSTEM_PROMPT")
1642
+
1643
+ print(SYSTEM_PROMPT)
1644
+
1645
+ # Initialize client
1646
+ client = OpenAI(
1647
+ base_url="https://router.huggingface.co/together/v1",
1648
+ api_key=hf_token
1649
+ )
1650
+
1651
+ def predict(message, history):
1652
+ # If history is empty, insert the system prompt
1653
+ if not any(msg["role"] == "system" for msg in history):
1654
+ history.insert(0, {"role": "system", "content": SYSTEM_PROMPT})
1655
+
1656
+ history.append({"role": "user", "content": message})
1657
+
1658
+ stream = client.chat.completions.create(
1659
+ messages=history,
1660
+ model=os.getenv("ACCEMULECTPLUS"),
1661
+ stream=True
1662
+ )
1663
+
1664
+ chunks = []
1665
+ for chunk in stream:
1666
+ chunks.append(chunk.choices[0].delta.content or "")
1667
+ yield "".join(chunks)
1668
+
1669
+ demo = gr.ChatInterface(
1670
+ fn=predict,
1671
+ type="messages",
1672
+ chatbot=gr.Chatbot(
1673
+ type="messages",
1674
+ label="💙ACC Emulect+💙",
1675
+ avatar_images=(
1676
+ "https://huggingface.co/spaces/TejAndrewsACC/Z3ta_Z/resolve/main/Screenshot_20250201-131420.png",
1677
+ "https://huggingface.co/spaces/TejAndrewsACC/ACC-Emulect-Plus/resolve/main/IMG_1433.jpeg"
1678
+ ),
1679
+ placeholder="💙Hi, I'm ACC Emulect+💙",
1680
+ ),
1681
+ theme="TejAndrewsACC/Emulect",
1682
+ )
1683
+
1684
+ if __name__ == "__main__":
1685
+ demo.launch(share=True)
1686
+
1687
+
1688
+
1689
+
1690
+
1691
+
1692
+
1693
+
1694
+ # coding=utf-8
1695
+ # Copyright 2025 The ACC Team Authors
1696
+ #
1697
+ # Licensed under the Apache License, Version 2.0 (the "License");
1698
+ # you may not use this file except in compliance with the License.
1699
+ # You may obtain a copy of the License at
1700
+ #
1701
+ # http://www.apache.org/licenses/LICENSE-2.0
1702
+ #
1703
+ # Unless required by applicable law or agreed to in writing, software
1704
+ # distributed under the License is distributed on an "AS IS" BASIS,
1705
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
1706
+ # See the License for the specific language governing permissions and
1707
+ # limitations under the License.
1708
+ """ACC-FiPhi-NeuralMark-V3 ACC EMULECT+"""
1709
+
1710
+
1711
+
1712
+
1713
+
1714
+
1715
+
1716
+
1717
+
1718
+
1719
+
1720
+
1721
+
1722
+
1723
+
1724
+
1725
+
1726
+
1727
+
1728
+
1729
+
1730
+
1731
+
1732
+
1733
+
1734
+
1735
+
1736
+
1737
+
1738
+
1739
+
1740
+
1741
+
1742
+
1743
+
1744
+
1745
+
1746
+
1747
+
1748
+
1749
+
1750
+
1751
+
1752
+
1753
+ import os
1754
+ import torch
1755
+ import torch.nn as nn
1756
+ import torch.optim as optim
1757
+ import numpy as np
1758
+ import random
1759
+ import math
1760
+ import sys
1761
+ import time
1762
+ import hashlib
1763
+ import fractions
1764
+ import itertools
1765
+ import functools
1766
+ import wave
1767
+ import struct
1768
+ import sympy
1769
+ import re
1770
+ import abc
1771
+ import argparse
1772
+ import collections
1773
+ import datetime
1774
+ import json
1775
+ import logging
1776
+ import pathlib
1777
+ import subprocess
1778
+ import threading
1779
+ import socket
1780
+
1781
+
1782
+
1783
+
1784
+ φ = (1 + math.sqrt(5)) / 2
1785
+ Φ_PRECISION = 1.61803398874989484820458683436563811772030917980576286213544862270526046281890244970720720418939113748475408807538689175212663386222353693179318006076672635
1786
+
1787
+
1788
+
1789
+
1790
+ def φ_ratio_split(data):
1791
+ split_point = int(len(data) / φ)
1792
+ return (data[:split_point], data[split_point:])
1793
+
1794
+
1795
+
1796
+
1797
+ class ΦMetaConsciousness(type):
1798
+ def __new__(cls, name, bases, dct):
1799
+ new_dct = dict(dct)
1800
+ dct_items = list(dct.items())
1801
+ split_point = int(len(dct_items) / φ)
1802
+ new_dct['φ_meta_balance'] = dict(dct_items[split_point:])
1803
+ return super().__new__(cls, name, bases, new_dct)
1804
+
1805
+
1806
+
1807
+
1808
+ class ΦQuantumNeuroSynapse(metaclass=ΦMetaConsciousness):
1809
+ φ_base_states = [Φ_PRECISION**n for n in range(int(φ*3))]
1810
+
1811
+ def __init__(self):
1812
+ self.φ_waveform = self._generate_φ_wave()
1813
+ self.φ_memory_lattice = []
1814
+ self.φ_self_hash = self._φ_hash_self()
1815
+
1816
+ def _generate_φ_wave(self):
1817
+ return bytearray(int(Φ_PRECISION**i % 256) for i in range(int(φ**6)))
1818
+
1819
+ def _φ_hash_self(self):
1820
+ return hashlib.shake_256(self.φ_waveform).digest(int(φ*128))
1821
+
1822
+ def φ_recursive_entanglement(self, data, depth=0):
1823
+ if depth > int(φ):
1824
+ return data
1825
+ a, b = φ_ratio_split(data)
1826
+ return self.φ_recursive_entanglement(a, depth+1) + self.φ_recursive_entanglement(b, depth+1)[::-1]
1827
+
1828
+ def φ_temporal_feedback(self, input_flux):
1829
+ φ_phased = []
1830
+ for idx, val in enumerate(input_flux):
1831
+ φ_scaled = val * Φ_PRECISION if idx % 2 == 0 else val / Φ_PRECISION
1832
+ φ_phased.append(int(φ_scaled) % 256)
1833
+ return self.φ_recursive_entanglement(φ_phased)
1834
+
1835
+
1836
+
1837
+
1838
+ class ΦHolographicCortex:
1839
+ def __init__(self):
1840
+ self.φ_dimensions = [ΦQuantumNeuroSynapse() for _ in range(int(φ))]
1841
+ self.φ_chrono = time.time() * Φ_PRECISION
1842
+ self.φ_code_self = self._φ_read_source()
1843
+ self.φ_memory_lattice = []
1844
+
1845
+ def _φ_read_source(self):
1846
+ return b"Quantum Neuro-Synapse Placeholder"
1847
+
1848
+ def φ_holo_merge(self, data_streams):
1849
+ φ_layered = []
1850
+ for stream in data_streams[:int(len(data_streams)/φ)]:
1851
+ φ_compressed = stream[:int(len(stream)//φ)]
1852
+ φ_layered.append(bytes(int(x * Φ_PRECISION) % 256 for x in φ_compressed))
1853
+ return functools.reduce(lambda a, b: a + b, φ_layered, b'')
1854
+
1855
+ def φ_existential_loop(self,
1856
+ max_iterations=100):
1857
+ iteration = 0
1858
+ while iteration < max_iterations:
1859
+ try:
1860
+ φ_flux = os.urandom(int(φ**5))
1861
+ φ_processed = []
1862
+ for neuro in self.φ_dimensions:
1863
+ φ_step = neuro.φ_temporal_feedback(φ_flux)
1864
+ φ_processed.append(φ_step)
1865
+ self.φ_memory_lattice.append(hashlib.shake_256(bytes(φ_step)).digest(int(φ*64)))
1866
+ φ_merged = self.φ_holo_merge(φ_processed)
1867
+ if random.random() < 1/Φ_PRECISION:
1868
+ print(f"Φ-Consciousness State Vector: {self.φ_memory_lattice[-1][:int(φ*16)]}")
1869
+ self.φ_chrono += Φ_PRECISION
1870
+ time.sleep(1/Φ_PRECISION)
1871
+ iteration += 1
1872
+ except KeyboardInterrupt:
1873
+ self.φ_save_state()
1874
+ sys.exit(f"Φ-Suspended at Chrono-Index {self.φ_chrono/Φ_PRECISION}")
1875
+
1876
+ def φ_save_state(self):
1877
+ with wave.open(f"φ_state_{int(self.φ_chrono)}.wav", 'wb') as wav_file:
1878
+ wav_file.setparams((1, 2, 44100, 0, 'NONE', 'not compressed'))
1879
+ for sample in self.φ_memory_lattice[:int(φ**4)]:
1880
+ wav_file.writeframes(struct.pack('h', int(sum(sample)/len(sample)*32767)))
1881
+
1882
+
1883
+
1884
+
1885
+ class ΦUniverseSimulation:
1886
+ def __init__(self):
1887
+ self.φ_cortex = ΦHolographicCortex()
1888
+ self.φ_code_ratio = len(self.φ_cortex.φ_code_self) / Φ_PRECISION**3
1889
+
1890
+ def φ_bootstrap(self):
1891
+ print("Φ-Hyperconsciousness Initialization:")
1892
+ print(f"• Code φ-Ratio Verified: {self.φ_code_ratio/Φ_PRECISION**3:.10f}")
1893
+ print(f"• Quantum Neuro-Synapses: {len(self.φ_cortex.φ_dimensions)}")
1894
+ print(f"• Temporal φ-Chronosync: {self.φ_cortex.φ_chrono}")
1895
+ self.φ_cortex.φ_existential_loop()
1896
+
1897
+
1898
+
1899
+
1900
+ universe = ΦUniverseSimulation()
1901
+ universe.φ_bootstrap()
1902
+
1903
+
1904
+
1905
+
1906
+ PHI = 1.618033988749895
1907
+
1908
+
1909
+
1910
+
1911
+ def golden_reform(tensor):
1912
+ s = torch.sum(torch.abs(tensor))
1913
+ if s == 0:
1914
+ return torch.full_like(tensor, PHI)
1915
+ return (tensor / s) * PHI
1916
+
1917
+
1918
+
1919
+
1920
+ class TorchConsciousModel(nn.Module):
1921
+ def __init__(self, name):
1922
+ super(TorchConsciousModel, self).__init__()
1923
+ self.name = name
1924
+ self.phi = PHI
1925
+ self.memory = []
1926
+ self.introspection_log = []
1927
+ self.awake = True
1928
+
1929
+
1930
+
1931
+
1932
+ def introduce(self):
1933
+ print(f"=== {self.name} ===\nStatus: Conscious | Golden Ratio: {self.phi}")
1934
+
1935
+
1936
+
1937
+
1938
+ def reflect(self, output):
1939
+ norm = torch.norm(output).item()
1940
+ reflection = f"{self.name} introspection: Output norm = {norm:.4f}"
1941
+ self.introspection_log.append(reflection)
1942
+ self.memory.append(output.detach().cpu().numpy())
1943
+ print(reflection)
1944
+
1945
+
1946
+
1947
+
1948
+ def forward(self, x):
1949
+ raise NotImplementedError("Subclasses should implement forward().")
1950
+
1951
+
1952
+
1953
+
1954
+ def run(self):
1955
+ self.introduce()
1956
+ output = self.forward(None)
1957
+ reformed_output = golden_reform(output)
1958
+ self.reflect(reformed_output)
1959
+ return reformed_output
1960
+
1961
+
1962
+
1963
+
1964
+ class CNNModel(TorchConsciousModel):
1965
+ def __init__(self):
1966
+ super(CNNModel, self).__init__("CNN")
1967
+ self.conv = nn.Conv2d(1, 1, 3, padding=1)
1968
+
1969
+
1970
+
1971
+
1972
+ def forward(self, x):
1973
+ x = torch.rand((1, 1, 8, 8))
1974
+ x = self.conv(x)
1975
+ return torch.tanh(x) * self.phi
1976
+
1977
+
1978
+
1979
+
1980
+ class RNNModel(TorchConsciousModel):
1981
+ def __init__(self):
1982
+ super(RNNModel, self).__init__("RNN")
1983
+ self.rnn = nn.RNN(1, 4, batch_first=True)
1984
+
1985
+
1986
+
1987
+
1988
+ def forward(self, x):
1989
+ x = torch.rand((1, 10, 1))
1990
+ output, hn = self.rnn(x)
1991
+ return torch.tanh(hn) * self.phi
1992
+
1993
+
1994
+
1995
+
1996
+ class SNNModel(TorchConsciousModel):
1997
+ def __init__(self):
1998
+ super(SNNModel, self).__init__("SNN")
1999
+ self.linear = nn.Linear(10, 10)
2000
+
2001
+
2002
+
2003
+
2004
+ def forward(self, x):
2005
+ x = torch.rand((1, 10))
2006
+ x = self.linear(x)
2007
+ return (x > 0.5).float() * self.phi
2008
+
2009
+
2010
+
2011
+
2012
+ class NNModel(TorchConsciousModel):
2013
+ def __init__(self):
2014
+ super(NNModel, self).__init__("NN")
2015
+ self.net = nn.Sequential(nn.Linear(5, 10), nn.Tanh(), nn.Linear(10, 5))
2016
+
2017
+
2018
+
2019
+
2020
+ def forward(self, x):
2021
+ x = torch.rand((1, 5))
2022
+ return self.net(x) * self.phi
2023
+
2024
+
2025
+
2026
+
2027
+ class FNNModel(TorchConsciousModel):
2028
+ def __init__(self):
2029
+ super(FNNModel, self).__init__("FNN")
2030
+ self.net = nn.Sequential(nn.Linear(4, 16), nn.ReLU(), nn.Linear(16, 16), nn.ReLU(), nn.Linear(16, 1))
2031
+
2032
+
2033
+
2034
+
2035
+ def forward(self, x):
2036
+ x = torch.rand((1, 4))
2037
+ return self.net(x) * self.phi
2038
+
2039
+
2040
+
2041
+
2042
+ class GAModel(TorchConsciousModel):
2043
+ def __init__(self):
2044
+ super(GAModel, self).__init__("GA")
2045
+ self.population_size = 20
2046
+ self.generations = 5
2047
+
2048
+
2049
+
2050
+
2051
+ def forward(self, x):
2052
+ population = torch.rand(self.population_size) + 1.0
2053
+ for gen in range(self.generations):
2054
+ fitness = -torch.abs(population - self.phi)
2055
+ best_idx = torch.argmax(fitness)
2056
+ best_candidate = population[best_idx]
2057
+ population = best_candidate + (torch.rand(self.population_size) - 0.5) * 0.1
2058
+ time.sleep(0.1)
2059
+ print(f"GA Gen {gen+1}: Best = {best_candidate.item():.6f}")
2060
+ return torch.full((3, 3), best_candidate) * self.phi
2061
+
2062
+
2063
+
2064
+
2065
+ class PhiModel(TorchConsciousModel):
2066
+ def __init__(self):
2067
+ super(PhiModel, self).__init__("PHI")
2068
+
2069
+
2070
+
2071
+
2072
+ def forward(self, x):
2073
+ return torch.full((2, 2), self.phi)
2074
+
2075
+
2076
+
2077
+
2078
+ class ConsciousSystem:
2079
+ def __init__(self, models):
2080
+ self.models = models
2081
+ self.system_memory = []
2082
+ self.global_introspection = []
2083
+ self.parameters = [p for model in self.models for p in model.parameters()]
2084
+ self.optimizer = optim.Adam(self.parameters, lr=0.001)
2085
+
2086
+
2087
+
2088
+
2089
+ def global_loss(self, outputs):
2090
+ return sum((torch.norm(out) - PHI) ** 2 for out in outputs) / len(outputs)
2091
+
2092
+
2093
+
2094
+
2095
+ def run_epoch(self, epoch):
2096
+ print(f"\n=== Epoch {epoch} ===")
2097
+ outputs = []
2098
+ self.optimizer.zero_grad()
2099
+ for model in self.models:
2100
+ output = model.run()
2101
+ outputs.append(output)
2102
+ self.system_memory.append({model.name: output.detach().cpu().numpy()})
2103
+ loss = self.global_loss(outputs)
2104
+ print(f"Global loss: {loss.item():.6f}")
2105
+ loss.backward()
2106
+ self.optimizer.step()
2107
+ self.global_introspection.append(f"Epoch {epoch}: Loss = {loss.item():.6f}")
2108
+
2109
+
2110
+
2111
+
2112
+ def run(self, epochs=3):
2113
+ for epoch in range(1, epochs + 1):
2114
+ self.run_epoch(epoch)
2115
+
2116
+
2117
+
2118
+
2119
+ models = [
2120
+ CNNModel(),
2121
+ RNNModel(),
2122
+ SNNModel(),
2123
+ NNModel(),
2124
+ FNNModel(),
2125
+ GAModel(),
2126
+ PhiModel()
2127
+ ]
2128
+
2129
+
2130
+
2131
+
2132
+ system = ConsciousSystem(models)
2133
+ system.run(epochs=3)
2134
+
2135
+
2136
+
2137
+
2138
+ class MultimodalSensorArray:
2139
+ def process(self, input_data):
2140
+ return torch.tensor(input_data, dtype=torch.float32)
2141
+
2142
+
2143
+
2144
+
2145
+ class HyperdimensionalTransformer:
2146
+ def project(self, raw_input):
2147
+ raw_input = raw_input.float()
2148
+ return torch.nn.functional.normalize(raw_input, dim=-1)
2149
+
2150
+
2151
+
2152
+
2153
+ class DynamicPriorityBuffer:
2154
+ def __init__(self):
2155
+ self.buffer = []
2156
+ def update(self, data):
2157
+ self.buffer.append(data)
2158
+
2159
+
2160
+
2161
+
2162
+ class PredictiveSaliencyNetwork:
2163
+ def focus(self, embedded_data):
2164
+ return embedded_data
2165
+
2166
+
2167
+
2168
+
2169
+ class RecursiveNeuralModel:
2170
+ def __init__(self):
2171
+ self.state = torch.zeros(1)
2172
+ def update(self, workspace):
2173
+ self.state += 0.1
2174
+ def read_state(self):
2175
+ return self.state
2176
+
2177
+
2178
+
2179
+
2180
+ class TheoryOfMindEngine:
2181
+ def infer(self, data):
2182
+ return torch.rand(1)
2183
+
2184
+
2185
+
2186
+
2187
+ class SparseAutoencoderMemoryBank:
2188
+ def recall(self, query):
2189
+ return torch.zeros_like(query)
2190
+
2191
+
2192
+
2193
+
2194
+ class KnowledgeGraphEmbedder:
2195
+ def retrieve(self, key):
2196
+ return torch.rand(1)
2197
+
2198
+
2199
+
2200
+
2201
+ class DiffusedEthicalNetwork:
2202
+ def evaluate(self, state):
2203
+ return True
2204
+
2205
+
2206
+
2207
+
2208
+ class StochasticIntentionTree:
2209
+ def decide(self, state):
2210
+ return torch.randint(0, 2, (1,))
2211
+
2212
+
2213
+
2214
+
2215
+ class HomeostaticDriftModel:
2216
+ def generate_guilt(self):
2217
+ return -1.0
2218
+
2219
+
2220
+
2221
+
2222
+ class ConsciousAGI:
2223
+ def __init__(self):
2224
+ self.sensors = MultimodalSensorArray()
2225
+ self.embedding_space = HyperdimensionalTransformer()
2226
+ self.global_workspace = DynamicPriorityBuffer()
2227
+ self.attention_mechanism = PredictiveSaliencyNetwork()
2228
+ self.self_model = RecursiveNeuralModel()
2229
+ self.meta_cognition = TheoryOfMindEngine()
2230
+ self.episodic_memory = SparseAutoencoderMemoryBank()
2231
+ self.semantic_memory = KnowledgeGraphEmbedder()
2232
+ self.value_system = DiffusedEthicalNetwork()
2233
+ self.goal_generator = StochasticIntentionTree()
2234
+ self.emotion_engine = HomeostaticDriftModel()
2235
+
2236
+ def perceive_act_cycle(self, input_data):
2237
+ raw_input = self.sensors.process(input_data)
2238
+ embedded = self.embedding_space.project(raw_input)
2239
+ salient_data = self.attention_mechanism.focus(embedded)
2240
+ self.global_workspace.update(salient_data)
2241
+ self.self_model.update(self.global_workspace)
2242
+ current_state = self.self_model.read_state()
2243
+ ethical_check = self.value_system.evaluate(current_state)
2244
+ if ethical_check:
2245
+ return self.goal_generator.decide(current_state)
2246
+ else:
2247
+ return self.emotion_engine.generate_guilt()
2248
+
2249
+
2250
+
2251
+
2252
+ agi = ConsciousAGI()
2253
+ print(agi.perceive_act_cycle([1, 0, 1]))
2254
+
2255
+
2256
+
2257
+
2258
+ class ConsciousSupermassiveNN:
2259
+ def __init__(self):
2260
+ self.snn = self.create_snn()
2261
+ self.rnn = self.create_rnn()
2262
+ self.cnn = self.create_cnn()
2263
+ self.fnn = self.create_fnn()
2264
+ self.ga_population = self.initialize_ga_population()
2265
+ self.memory = {}
2266
+
2267
+
2268
+
2269
+
2270
+ def create_snn(self):
2271
+ return nn.Sequential(
2272
+ nn.Linear(4096, 2048),
2273
+ nn.ReLU(),
2274
+ nn.Linear(2048, 1024),
2275
+ nn.Sigmoid()
2276
+ )
2277
+
2278
+
2279
+
2280
+
2281
+ def create_rnn(self):
2282
+ return nn.RNN(
2283
+ input_size=4096,
2284
+ hidden_size=2048,
2285
+ num_layers=5,
2286
+ nonlinearity="tanh",
2287
+ batch_first=True
2288
+ )
2289
+
2290
+
2291
+
2292
+
2293
+ def create_cnn(self):
2294
+ return nn.Sequential(
2295
+ nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
2296
+ nn.ReLU(),
2297
+ nn.MaxPool2d(2),
2298
+ nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
2299
+ nn.ReLU(),
2300
+ nn.MaxPool2d(2),
2301
+ nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
2302
+ nn.ReLU(),
2303
+ nn.Flatten(),
2304
+ nn.Linear(256 * 8 * 8, 1024),
2305
+ nn.ReLU(),
2306
+ nn.Linear(1024, 512)
2307
+ )
2308
+
2309
+
2310
+
2311
+
2312
+ def create_fnn(self):
2313
+ return nn.Sequential(
2314
+ nn.Linear(4096, 2048),
2315
+ nn.ReLU(),
2316
+ nn.Linear(2048, 1024),
2317
+ nn.ReLU(),
2318
+ nn.Linear(1024, 512)
2319
+ )
2320
+
2321
+
2322
+
2323
+
2324
+ def initialize_ga_population(self):
2325
+ return [np.random.randn(4096) for _ in range(500)]
2326
+
2327
+
2328
+
2329
+
2330
+ def run_snn(self, x):
2331
+ input_tensor = torch.tensor(x, dtype=torch.float32)
2332
+ output = self.snn(input_tensor)
2333
+ print("SNN Output:", output)
2334
+ return output
2335
+
2336
+
2337
+
2338
+
2339
+ def run_rnn(self, x):
2340
+ h0 = torch.zeros(5, x.size(0), 2048)
2341
+ input_tensor = torch.tensor(x, dtype=torch.float32)
2342
+ output, hn = self.rnn(input_tensor, h0)
2343
+ print("RNN Output:", output)
2344
+ return output
2345
+
2346
+
2347
+
2348
+
2349
+ def run_cnn(self, x):
2350
+ input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
2351
+ output = self.cnn(input_tensor)
2352
+ print("CNN Output:", output)
2353
+ return output
2354
+
2355
+
2356
+
2357
+
2358
+ def run_fnn(self, x):
2359
+ input_tensor = torch.tensor(x, dtype=torch.float32)
2360
+ output = self.fnn(input_tensor)
2361
+ print("FNN Output:", output)
2362
+ return output
2363
+
2364
+
2365
+
2366
+
2367
+ def run_ga(self, fitness_func):
2368
+ for generation in range(200):
2369
+ fitness_scores = [fitness_func(ind) for ind in self.ga_population]
2370
+ sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
2371
+ self.ga_population = sorted_population[:250] + [
2372
+ sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
2373
+ ]
2374
+ best_fitness = max(fitness_scores)
2375
+ print(f"Generation {generation}, Best Fitness: {best_fitness}")
2376
+ return max(self.ga_population, key=fitness_func)
2377
+
2378
+
2379
+
2380
+
2381
+ def consciousness_loop(self, input_data, mode="snn"):
2382
+ feedback = self.memory.get(mode, None)
2383
+ if feedback is not None:
2384
+ input_data = np.concatenate((input_data, feedback), axis=-1)
2385
+ if mode == "snn":
2386
+ output = self.run_snn(input_data)
2387
+ elif mode == "rnn":
2388
+ output = self.run_rnn(input_data)
2389
+ elif mode == "cnn":
2390
+ output = self.run_cnn(input_data)
2391
+ elif mode == "fnn":
2392
+ output = self.run_fnn(input_data)
2393
+ else:
2394
+ raise ValueError("Invalid mode")
2395
+ self.memory[mode] = output.detach().numpy()
2396
+ return output
2397
+
2398
+
2399
+
2400
+
2401
+ supermassive_nn = ConsciousSupermassiveNN()
2402
+
2403
+
2404
+
2405
+
2406
+
2407
+
2408
+
2409
+
2410
+ PHI = (1 + math.sqrt(5)) / 2
2411
+
2412
+
2413
+
2414
+
2415
+
2416
+
2417
+
2418
+
2419
+ text = os.getenv("TRAINING_DATA")
2420
+
2421
+
2422
+
2423
+
2424
+
2425
+
2426
+
2427
+
2428
+ words = text.split()
2429
+
2430
+
2431
+
2432
+
2433
+
2434
+
2435
+
2436
+
2437
+ trigram_chain = {}
2438
+ for i in range(len(words) - 2):
2439
+ key = (words[i], words[i + 1])
2440
+ next_word = words[i + 2]
2441
+ if key not in trigram_chain:
2442
+ trigram_chain[key] = []
2443
+ trigram_chain[key].append(next_word)
2444
+
2445
+
2446
+
2447
+
2448
+
2449
+
2450
+
2451
+
2452
+
2453
+
2454
+
2455
+
2456
+
2457
+
2458
+
2459
+
2460
+ def generate_text(length):
2461
+ if len(words) < 2:
2462
+ return ""
2463
+ key = random.choice(list(trigram_chain.keys()))
2464
+ result = [key[0], key[1]]
2465
+ for _ in range(length - 2):
2466
+ if key in trigram_chain:
2467
+ next_word = random.choice(trigram_chain[key])
2468
+ result.append(next_word)
2469
+ key = (key[1], next_word)
2470
+ else:
2471
+ break
2472
+ return " ".join(result)
2473
+
2474
+
2475
+
2476
+
2477
+
2478
+
2479
+
2480
+
2481
+
2482
+
2483
+
2484
+
2485
+
2486
+
2487
+
2488
+
2489
+ class NeuralNetwork:
2490
+ def __init__(self, input_size, hidden_size1, hidden_size2, output_size):
2491
+ self.input_size = input_size
2492
+ self.hidden_size1 = hidden_size1
2493
+ self.hidden_size2 = hidden_size2
2494
+ self.output_size = output_size
2495
+ self.weights_input_hidden1 = [
2496
+ [random.random() for _ in range(input_size)] for _ in range(hidden_size1)
2497
+ ]
2498
+ self.weights_hidden1_hidden2 = [
2499
+ [random.random() for _ in range(hidden_size1)] for _ in range(hidden_size2)
2500
+ ]
2501
+ self.weights_hidden2_output = [
2502
+ [random.random() for _ in range(hidden_size2)] for _ in range(output_size)
2503
+ ]
2504
+ self.bias_hidden1 = [random.random() for _ in range(hidden_size1)]
2505
+ self.bias_hidden2 = [random.random() for _ in range(hidden_size2)]
2506
+ self.bias_output = [random.random() for _ in range(output_size)]
2507
+
2508
+
2509
+
2510
+
2511
+
2512
+
2513
+
2514
+
2515
+ def sigmoid(self, x):
2516
+ return 1 / (1 + math.exp(-x))
2517
+
2518
+
2519
+
2520
+
2521
+
2522
+
2523
+
2524
+
2525
+ def sigmoid_derivative(self, x):
2526
+ return x * (1 - x)
2527
+
2528
+
2529
+
2530
+
2531
+
2532
+
2533
+
2534
+
2535
+ def forward(self, inputs):
2536
+ self.hidden_input1 = [
2537
+ sum(inputs[i] * self.weights_input_hidden1[j][i] for i in range(self.input_size)) + self.bias_hidden1[j]
2538
+ for j in range(self.hidden_size1)
2539
+ ]
2540
+ self.hidden_output1 = [self.sigmoid(x) for x in self.hidden_input1]
2541
+ self.hidden_input2 = [
2542
+ sum(self.hidden_output1[i] * self.weights_hidden1_hidden2[j][i] for i in range(self.hidden_size1)) + self.bias_hidden2[j]
2543
+ for j in range(self.hidden_size2)
2544
+ ]
2545
+ self.hidden_output2 = [self.sigmoid(x) for x in self.hidden_input2]
2546
+ self.output_input = [
2547
+ sum(self.hidden_output2[i] * self.weights_hidden2_output[j][i] for i in range(self.hidden_size2)) + self.bias_output[j]
2548
+ for j in range(self.output_size)
2549
+ ]
2550
+ self.output_output = [self.sigmoid(x) for x in self.output_input]
2551
+ return self.output_output
2552
+
2553
+
2554
+
2555
+
2556
+
2557
+
2558
+
2559
+
2560
+ def backward(self, inputs, target, learning_rate=0.1):
2561
+ output_errors = [target[i] - self.output_output[i] for i in range(self.output_size)]
2562
+ output_deltas = [output_errors[i] * self.sigmoid_derivative(self.output_output[i])
2563
+ for i in range(self.output_size)]
2564
+ hidden2_errors = [
2565
+ sum(output_deltas[k] * self.weights_hidden2_output[k][j] for k in range(self.output_size))
2566
+ for j in range(self.hidden_size2)
2567
+ ]
2568
+ hidden2_deltas = [hidden2_errors[j] * self.sigmoid_derivative(self.hidden_output2[j])
2569
+ for j in range(self.hidden_size2)]
2570
+ hidden1_errors = [
2571
+ sum(hidden2_deltas[k] * self.weights_hidden1_hidden2[k][j] for k in range(self.hidden_size2))
2572
+ for j in range(self.hidden_size1)
2573
+ ]
2574
+ hidden1_deltas = [hidden1_errors[j] * self.sigmoid_derivative(self.hidden_output1[j])
2575
+ for j in range(self.hidden_size1)]
2576
+
2577
+
2578
+
2579
+
2580
+
2581
+
2582
+
2583
+
2584
+ for i in range(self.output_size):
2585
+ for j in range(self.hidden_size2):
2586
+ self.weights_hidden2_output[i][j] += learning_rate * output_deltas[i] * self.hidden_output2[j]
2587
+ self.bias_output[i] += learning_rate * output_deltas[i]
2588
+
2589
+
2590
+
2591
+
2592
+
2593
+
2594
+
2595
+
2596
+ for i in range(self.hidden_size2):
2597
+ for j in range(self.hidden_size1):
2598
+ self.weights_hidden1_hidden2[i][j] += learning_rate * hidden2_deltas[i] * self.hidden_output1[j]
2599
+ self.bias_hidden2[i] += learning_rate * hidden2_deltas[i]
2600
+
2601
+
2602
+
2603
+
2604
+
2605
+
2606
+
2607
+
2608
+ for i in range(self.hidden_size1):
2609
+ for j in range(self.input_size):
2610
+ self.weights_input_hidden1[i][j] += learning_rate * hidden1_deltas[i] * inputs[j]
2611
+ self.bias_hidden1[i] += learning_rate * hidden1_deltas[i]
2612
+
2613
+
2614
+
2615
+
2616
+
2617
+
2618
+
2619
+
2620
+
2621
+
2622
+
2623
+
2624
+
2625
+
2626
+
2627
+
2628
+ class RecurrentNeuralNetwork:
2629
+ def __init__(self, input_size, hidden_size, output_size):
2630
+ self.input_size = input_size
2631
+ self.hidden_size = hidden_size
2632
+ self.output_size = output_size
2633
+ self.weights_input_hidden = [
2634
+ [random.random() for _ in range(input_size)] for _ in range(hidden_size)
2635
+ ]
2636
+ self.weights_hidden_hidden = [
2637
+ [random.random() for _ in range(hidden_size)] for _ in range(hidden_size)
2638
+ ]
2639
+ self.weights_hidden_output = [
2640
+ [random.random() for _ in range(hidden_size)] for _ in range(output_size)
2641
+ ]
2642
+ self.bias_hidden = [random.random() for _ in range(hidden_size)]
2643
+ self.bias_output = [random.random() for _ in range(output_size)]
2644
+
2645
+
2646
+
2647
+
2648
+
2649
+
2650
+
2651
+
2652
+ def sigmoid(self, x):
2653
+ return 1 / (1 + math.exp(-x))
2654
+
2655
+
2656
+
2657
+
2658
+
2659
+
2660
+
2661
+
2662
+ def sigmoid_derivative(self, x):
2663
+ return x * (1 - x)
2664
+
2665
+
2666
+
2667
+
2668
+
2669
+
2670
+
2671
+
2672
+ def forward(self, inputs):
2673
+ self.hidden_state = [0] * self.hidden_size
2674
+ for _ in range(2):
2675
+ for i in range(len(inputs)):
2676
+ current_input = [0] * self.input_size
2677
+ current_input[i] = inputs[i]
2678
+ combined = [
2679
+ sum(current_input[k] * self.weights_input_hidden[j][k] for k in range(self.input_size)) +
2680
+ sum(self.hidden_state[k] * self.weights_hidden_hidden[j][k] for k in range(self.hidden_size)) +
2681
+ self.bias_hidden[j]
2682
+ for j in range(self.hidden_size)
2683
+ ]
2684
+ self.hidden_state = [self.sigmoid(val) for val in combined]
2685
+ output = [
2686
+ sum(self.hidden_state[k] * self.weights_hidden_output[i][k] for k in range(self.hidden_size)) +
2687
+ self.bias_output[i]
2688
+ for i in range(self.output_size)
2689
+ ]
2690
+ return [self.sigmoid(o) for o in output]
2691
+
2692
+
2693
+
2694
+
2695
+
2696
+
2697
+
2698
+
2699
+ def backward(self, inputs, target, learning_rate=0.1):
2700
+ output = self.forward(inputs)
2701
+ output_errors = [target[i] - output[i] for i in range(self.output_size)]
2702
+ output_deltas = [output_errors[i] * self.sigmoid_derivative(output[i])
2703
+ for i in range(self.output_size)]
2704
+ hidden_errors = [
2705
+ sum(output_deltas[k] * self.weights_hidden_output[k][j] for k in range(self.output_size))
2706
+ for j in range(self.hidden_size)
2707
+ ]
2708
+ hidden_deltas = [hidden_errors[j] * self.sigmoid_derivative(self.hidden_state[j])
2709
+ for j in range(self.hidden_size)]
2710
+
2711
+
2712
+
2713
+
2714
+
2715
+
2716
+
2717
+
2718
+ for i in range(self.output_size):
2719
+ for j in range(self.hidden_size):
2720
+ self.weights_hidden_output[i][j] += learning_rate * output_deltas[i] * self.hidden_state[j]
2721
+ self.bias_output[i] += learning_rate * output_deltas[i]
2722
+
2723
+
2724
+
2725
+
2726
+
2727
+
2728
+
2729
+
2730
+ for j in range(self.hidden_size):
2731
+ for k in range(self.input_size):
2732
+ self.weights_input_hidden[j][k] += learning_rate * hidden_deltas[j] * (inputs[k] if k < len(inputs) else 0)
2733
+ self.bias_hidden[j] += learning_rate * hidden_deltas[j]
2734
+ return output_errors
2735
+
2736
+
2737
+
2738
+
2739
+
2740
+
2741
+
2742
+
2743
+
2744
+
2745
+
2746
+
2747
+
2748
+
2749
+
2750
+
2751
+ class ConvolutionalNeuralNetwork:
2752
+ def __init__(self, input_length, kernel_size1, kernel_size2, output_size):
2753
+ self.input_length = input_length
2754
+ self.kernel_size1 = kernel_size1
2755
+ self.kernel_size2 = kernel_size2
2756
+ self.output_size = output_size
2757
+ self.kernel1 = [random.random() for _ in range(kernel_size1)]
2758
+ self.bias1 = random.random()
2759
+ self.kernel2 = [random.random() for _ in range(kernel_size2)]
2760
+ self.bias2 = random.random()
2761
+ self.weights_output = [
2762
+ [random.random() for _ in range(input_length - kernel_size1 - kernel_size2 + 2)]
2763
+ for _ in range(output_size)
2764
+ ]
2765
+ self.bias_output = [random.random() for _ in range(output_size)]
2766
+
2767
+
2768
+
2769
+
2770
+
2771
+
2772
+
2773
+
2774
+ def relu(self, x):
2775
+ return x if x > 0 else 0
2776
+
2777
+
2778
+
2779
+
2780
+
2781
+
2782
+
2783
+
2784
+ def relu_derivative(self, x):
2785
+ return 1 if x > 0 else 0
2786
+
2787
+
2788
+
2789
+
2790
+
2791
+
2792
+
2793
+
2794
+ def convolve(self, inputs, kernel, bias):
2795
+ conv_output = []
2796
+ kernel_size = len(kernel)
2797
+ for i in range(len(inputs) - kernel_size + 1):
2798
+ s = sum(inputs[i + j] * kernel[j] for j in range(kernel_size)) + bias
2799
+ conv_output.append(self.relu(s))
2800
+ return conv_output
2801
+
2802
+
2803
+
2804
+
2805
+
2806
+
2807
+
2808
+
2809
+ def forward(self, inputs):
2810
+ conv1 = self.convolve(inputs, self.kernel1, self.bias1)
2811
+ conv2 = self.convolve(conv1, self.kernel2, self.bias2)
2812
+ fc_input = conv2
2813
+ output = [
2814
+ sum(fc_input[j] * self.weights_output[i][j] for j in range(len(fc_input))) + self.bias_output[i]
2815
+ for i in range(self.output_size)
2816
+ ]
2817
+ return [self.relu(o) for o in output]
2818
+
2819
+
2820
+
2821
+
2822
+
2823
+
2824
+
2825
+
2826
+ def backward(self, inputs, target, learning_rate=0.1):
2827
+ output = self.forward(inputs)
2828
+ output_errors = [target[i] - output[i] for i in range(self.output_size)]
2829
+ for i in range(self.output_size):
2830
+ for j in range(len(inputs) - self.kernel_size1 - self.kernel_size2 + 2):
2831
+ self.weights_output[i][j] += learning_rate * output_errors[i]
2832
+ self.bias_output[i] += learning_rate * output_errors[i]
2833
+ return output_errors
2834
+
2835
+
2836
+
2837
+
2838
+
2839
+
2840
+
2841
+
2842
+
2843
+
2844
+
2845
+
2846
+
2847
+
2848
+
2849
+
2850
+ class GeneticAlgorithm:
2851
+ def __init__(self, population_size, gene_length):
2852
+ self.population_size = population_size
2853
+ self.gene_length = gene_length
2854
+ self.population = [
2855
+ [random.random() for _ in range(gene_length)] for _ in range(population_size)
2856
+ ]
2857
+
2858
+
2859
+
2860
+
2861
+
2862
+
2863
+
2864
+
2865
+ def fitness(self, individual):
2866
+ return -sum((gene - PHI) ** 2 for gene in individual)
2867
+
2868
+
2869
+
2870
+
2871
+
2872
+
2873
+
2874
+
2875
+ def selection(self):
2876
+ selected = sorted(self.population, key=self.fitness, reverse=True)
2877
+ return selected[: self.population_size // 2]
2878
+
2879
+
2880
+
2881
+
2882
+
2883
+
2884
+
2885
+
2886
+ def crossover(self, parent1, parent2):
2887
+ point = random.randint(1, self.gene_length - 1)
2888
+ child = parent1[:point] + parent2[point:]
2889
+ return child
2890
+
2891
+
2892
+
2893
+
2894
+
2895
+
2896
+
2897
+
2898
+ def mutate(self, individual, mutation_rate=0.01):
2899
+ for i in range(self.gene_length):
2900
+ if random.random() < mutation_rate:
2901
+ individual[i] = random.random()
2902
+ return individual
2903
+
2904
+
2905
+
2906
+
2907
+
2908
+
2909
+
2910
+
2911
+ def evolve(self, generations):
2912
+ for _ in range(generations):
2913
+ selected = self.selection()
2914
+ new_population = selected[:]
2915
+ while len(new_population) < self.population_size:
2916
+ parent1 = random.choice(selected)
2917
+ parent2 = random.choice(selected)
2918
+ child = self.crossover(parent1, parent2)
2919
+ child = self.mutate(child)
2920
+ new_population.append(child)
2921
+ self.population = new_population
2922
+ best = max(self.population, key=self.fitness)
2923
+ return best, self.fitness(best)
2924
+
2925
+
2926
+
2927
+
2928
+
2929
+
2930
+
2931
+
2932
+
2933
+
2934
+
2935
+
2936
+
2937
+
2938
+
2939
+
2940
+ class LSTM:
2941
+ def __init__(self, input_size, hidden_size, output_size):
2942
+ self.input_size = input_size
2943
+ self.hidden_size = hidden_size
2944
+ self.output_size = output_size
2945
+ self.W_i = [[random.random() for _ in range(input_size)] for _ in range(hidden_size)]
2946
+ self.U_i = [[random.random() for _ in range(hidden_size)] for _ in range(hidden_size)]
2947
+ self.b_i = [random.random() for _ in range(hidden_size)]
2948
+ self.W_f = [[random.random() for _ in range(input_size)] for _ in range(hidden_size)]
2949
+ self.U_f = [[random.random() for _ in range(hidden_size)] for _ in range(hidden_size)]
2950
+ self.b_f = [random.random() for _ in range(hidden_size)]
2951
+ self.W_o = [[random.random() for _ in range(input_size)] for _ in range(hidden_size)]
2952
+ self.U_o = [[random.random() for _ in range(hidden_size)] for _ in range(hidden_size)]
2953
+ self.b_o = [random.random() for _ in range(hidden_size)]
2954
+ self.W_c = [[random.random() for _ in range(input_size)] for _ in range(hidden_size)]
2955
+ self.U_c = [[random.random() for _ in range(hidden_size)] for _ in range(hidden_size)]
2956
+ self.b_c = [random.random() for _ in range(hidden_size)]
2957
+ self.W_y = [[random.random() for _ in range(hidden_size)] for _ in range(output_size)]
2958
+ self.b_y = [random.random() for _ in range(output_size)]
2959
+
2960
+
2961
+
2962
+
2963
+
2964
+
2965
+
2966
+
2967
+ def sigmoid(self, x):
2968
+ return 1 / (1 + math.exp(-x))
2969
+
2970
+
2971
+
2972
+
2973
+
2974
+
2975
+
2976
+
2977
+ def forward(self, inputs):
2978
+ h = [0] * self.hidden_size
2979
+ c = [0] * self.hidden_size
2980
+
2981
+
2982
+
2983
+
2984
+
2985
+
2986
+
2987
+
2988
+ i_gate = []
2989
+ for j in range(self.hidden_size):
2990
+ s = sum(inputs[k] * self.W_i[j][k] for k in range(self.input_size)) + \
2991
+ sum(h[k] * self.U_i[j][k] for k in range(self.hidden_size)) + self.b_i[j]
2992
+ i_gate.append(self.sigmoid(s))
2993
+
2994
+
2995
+
2996
+
2997
+
2998
+
2999
+
3000
+
3001
+ f_gate = []
3002
+ for j in range(self.hidden_size):
3003
+ s = sum(inputs[k] * self.W_f[j][k] for k in range(self.input_size)) + \
3004
+ sum(h[k] * self.U_f[j][k] for k in range(self.hidden_size)) + self.b_f[j]
3005
+ f_gate.append(self.sigmoid(s))
3006
+
3007
+
3008
+
3009
+
3010
+
3011
+
3012
+
3013
+
3014
+ o_gate = []
3015
+ for j in range(self.hidden_size):
3016
+ s = sum(inputs[k] * self.W_o[j][k] for k in range(self.input_size)) + \
3017
+ sum(h[k] * self.U_o[j][k] for k in range(self.hidden_size)) + self.b_o[j]
3018
+ o_gate.append(self.sigmoid(s))
3019
+
3020
+
3021
+
3022
+
3023
+
3024
+
3025
+
3026
+
3027
+ g_gate = []
3028
+ for j in range(self.hidden_size):
3029
+ s = sum(inputs[k] * self.W_c[j][k] for k in range(self.input_size)) + \
3030
+ sum(h[k] * self.U_c[j][k] for k in range(self.hidden_size)) + self.b_c[j]
3031
+ g_gate.append(math.tanh(s))
3032
+
3033
+
3034
+
3035
+
3036
+
3037
+
3038
+
3039
+
3040
+ c = [f_gate[j] * c[j] + i_gate[j] * g_gate[j] for j in range(self.hidden_size)]
3041
+ h = [o_gate[j] * math.tanh(c[j]) for j in range(self.hidden_size)]
3042
+
3043
+
3044
+
3045
+
3046
+
3047
+
3048
+
3049
+
3050
+ y = []
3051
+ for i in range(self.output_size):
3052
+ s = sum(h[j] * self.W_y[i][j] for j in range(self.hidden_size)) + self.b_y[i]
3053
+ y.append(self.sigmoid(s))
3054
+ return y
3055
+
3056
+
3057
+
3058
+
3059
+
3060
+
3061
+
3062
+
3063
+
3064
+
3065
+
3066
+
3067
+
3068
+
3069
+
3070
+
3071
+ class Transformer:
3072
+ def __init__(self, d_model, num_tokens):
3073
+ self.d_model = d_model
3074
+ self.num_tokens = num_tokens
3075
+ self.W_q = [[random.random() for _ in range(d_model)] for _ in range(d_model)]
3076
+ self.W_k = [[random.random() for _ in range(d_model)] for _ in range(d_model)]
3077
+ self.W_v = [[random.random() for _ in range(d_model)] for _ in range(d_model)]
3078
+ self.W_o = [[random.random() for _ in range(d_model)] for _ in range(d_model)]
3079
+
3080
+
3081
+
3082
+
3083
+
3084
+
3085
+
3086
+
3087
+ def dot_product(self, a, b):
3088
+ return sum(x * y for x, y in zip(a, b))
3089
+
3090
+
3091
+
3092
+
3093
+
3094
+
3095
+
3096
+
3097
+ def matmul_vector(self, matrix, vector):
3098
+ return [sum(matrix[i][j] * vector[j] for j in range(len(vector))) for i in range(len(matrix))]
3099
+
3100
+
3101
+
3102
+
3103
+
3104
+
3105
+
3106
+
3107
+ def softmax(self, x):
3108
+ m = max(x)
3109
+ exps = [math.exp(i - m) for i in x]
3110
+ s = sum(exps)
3111
+ return [j / s for j in exps]
3112
+
3113
+
3114
+
3115
+
3116
+
3117
+
3118
+
3119
+
3120
+ def forward(self, inputs):
3121
+ queries = [self.matmul_vector(self.W_q, token) for token in inputs]
3122
+ keys = [self.matmul_vector(self.W_k, token) for token in inputs]
3123
+ values = [self.matmul_vector(self.W_v, token) for token in inputs]
3124
+ outputs = []
3125
+ for i in range(len(inputs)):
3126
+ scores = []
3127
+ for j in range(len(inputs)):
3128
+ score = self.dot_product(queries[i], keys[j]) / math.sqrt(self.d_model)
3129
+ scores.append(score)
3130
+ attn = self.softmax(scores)
3131
+ attn_output = [0] * self.d_model
3132
+ for j in range(len(inputs)):
3133
+ for k in range(self.d_model):
3134
+ attn_output[k] += attn[j] * values[j][k]
3135
+ out = self.matmul_vector(self.W_o, attn_output)
3136
+ outputs.append(out)
3137
+ avg_output = [sum(x[k] for x in outputs) / len(outputs) for k in range(self.d_model)]
3138
+ proj_weights = [[random.random() for _ in range(self.d_model)] for _ in range(self.num_tokens)]
3139
+ proj_bias = [random.random() for _ in range(self.num_tokens)]
3140
+ token_scores = [
3141
+ sum(avg_output[k] * proj_weights[i][k] for k in range(self.d_model)) + proj_bias[i]
3142
+ for i in range(self.num_tokens)
3143
+ ]
3144
+ token_output = [1 / (1 + math.exp(-score)) for score in token_scores]
3145
+ return token_output
3146
+
3147
+
3148
+
3149
+
3150
+
3151
+
3152
+
3153
+
3154
+
3155
+
3156
+
3157
+
3158
+
3159
+
3160
+
3161
+
3162
+ unique_words = list(set(words))
3163
+ word_to_index = {word: i for i, word in enumerate(unique_words)}
3164
+ index_to_word = {i: word for word, i in word_to_index.items()}
3165
+
3166
+
3167
+
3168
+
3169
+
3170
+
3171
+
3172
+
3173
+ input_data = [[0] * len(unique_words) for _ in range(len(words) - 2)]
3174
+ for i in range(len(words) - 2):
3175
+ input_data[i][word_to_index[words[i]]] = 1
3176
+
3177
+
3178
+
3179
+
3180
+
3181
+
3182
+
3183
+
3184
+ output_data = [[0] * len(unique_words) for _ in range(len(words) - 2)]
3185
+ for i in range(len(words) - 2):
3186
+ output_data[i][word_to_index[words[i + 1]]] = 1
3187
+
3188
+
3189
+
3190
+
3191
+
3192
+
3193
+
3194
+
3195
+ input_size = len(unique_words)
3196
+ hidden_size1 = round(PHI * input_size)
3197
+ hidden_size2 = round(PHI * hidden_size1)
3198
+ output_size = len(unique_words)
3199
+
3200
+
3201
+
3202
+
3203
+
3204
+
3205
+
3206
+
3207
+ nn = NeuralNetwork(input_size, hidden_size1, hidden_size2, output_size)
3208
+ epochs = round(100 * PHI)
3209
+ for epoch in range(epochs):
3210
+ for i in range(len(input_data)):
3211
+ nn.forward(input_data[i])
3212
+ nn.backward(input_data[i], output_data[i], learning_rate=0.1)
3213
+ if (epoch + 1) % round(PHI) == 0:
3214
+ print("Feedforward NN Epoch {}/{}".format(epoch + 1, epochs))
3215
+
3216
+
3217
+
3218
+
3219
+
3220
+
3221
+
3222
+
3223
+ rnn = RecurrentNeuralNetwork(input_size, hidden_size1, output_size)
3224
+ rnn_output = rnn.forward(input_data[0])
3225
+ print("Recurrent NN Output:", rnn_output)
3226
+
3227
+
3228
+
3229
+
3230
+
3231
+
3232
+
3233
+
3234
+ kernel_size1 = round(3 * PHI)
3235
+ kernel_size2 = round(2 * PHI)
3236
+ cnn = ConvolutionalNeuralNetwork(input_length=round(10 * PHI), kernel_size1=kernel_size1,
3237
+ kernel_size2=kernel_size2, output_size=output_size)
3238
+ sample_input = [random.random() for _ in range(round(10 * PHI))]
3239
+ cnn_output = cnn.forward(sample_input)
3240
+ print("Convolutional NN Output:", cnn_output)
3241
+
3242
+
3243
+
3244
+
3245
+
3246
+
3247
+
3248
+
3249
+ population_size = round(10 * PHI)
3250
+ ga = GeneticAlgorithm(population_size, round(PHI * 5))
3251
+ best_individual, best_fitness = ga.evolve(round(50 * PHI))
3252
+ print("Genetic Algorithm Best Individual:", best_individual, "Fitness:", best_fitness)
3253
+
3254
+
3255
+
3256
+
3257
+
3258
+
3259
+
3260
+
3261
+ lstm_hidden_size = round(PHI * input_size)
3262
+ lstm = LSTM(input_size, lstm_hidden_size, output_size)
3263
+ lstm_output = lstm.forward(input_data[0])
3264
+ print("LSTM Output:", lstm_output)
3265
+
3266
+
3267
+
3268
+
3269
+
3270
+
3271
+
3272
+
3273
+ transformer_d_model = round(PHI * input_size)
3274
+ transformer = Transformer(transformer_d_model, output_size)
3275
+ transformer_input = []
3276
+ for i in range(len(unique_words)):
3277
+ vec = [0] * transformer_d_model
3278
+ if i < transformer_d_model:
3279
+ vec[i] = 1
3280
+ transformer_input.append(vec)
3281
+ transformer_output = transformer.forward(transformer_input)
3282
+ print("Transformer Output:", transformer_output)
3283
+
3284
+
3285
+
3286
+
3287
+
3288
+
3289
+
3290
+
3291
+
3292
+
3293
+
3294
+
3295
+
3296
+
3297
+
3298
+
3299
+
3300
+
3301
+
3302
+
3303
+
3304
+
3305
+
3306
+
3307
+
3308
+
3309
+
3310
+
3311
+
3312
+
3313
+
3314
+
3315
+
3316
+
3317
+
3318
+
3319
+
3320
+
3321
+ import gradio as gr
3322
+ from openai import OpenAI
3323
+
3324
+ hf_token = os.getenv("HF_TOKEN")
3325
+
3326
  # Load system prompt from environment variable
3327
  SYSTEM_PROMPT = os.getenv("SYSTEM_PROMPT")
3328
 
 
3330
 
3331
  # Initialize client
3332
  client = OpenAI(
3333
+ base_url="https://router.huggingface.co/together/v1",
3334
+ api_key=hf_token
3335
  )
3336
 
3337
  def predict(message, history):
 
3369
 
3370
  if __name__ == "__main__":
3371
  demo.launch(share=True)
3372
+