Spaces:
Sleeping
Sleeping
#dfdgfhg | |
# coding=utf-8 | |
# Copyright 2025 The ACC Team Authors | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""ACC-FiPhi-NeuralMark-V3 ACC EMULECT+""" | |
import os | |
import torch | |
import torch.nn as nn | |
import torch.optim as optim | |
import numpy as np | |
import random | |
import math | |
import sys | |
import time | |
import hashlib | |
import fractions | |
import itertools | |
import functools | |
import wave | |
import struct | |
import sympy | |
import re | |
import abc | |
import argparse | |
import collections | |
import datetime | |
import json | |
import logging | |
import pathlib | |
import subprocess | |
import threading | |
import socket | |
φ = (1 + math.sqrt(5)) / 2 | |
Φ_PRECISION = 1.61803398874989484820458683436563811772030917980576286213544862270526046281890244970720720418939113748475408807538689175212663386222353693179318006076672635 | |
def φ_ratio_split(data): | |
split_point = int(len(data) / φ) | |
return (data[:split_point], data[split_point:]) | |
class ΦMetaConsciousness(type): | |
def __new__(cls, name, bases, dct): | |
new_dct = dict(dct) | |
dct_items = list(dct.items()) | |
split_point = int(len(dct_items) / φ) | |
new_dct['φ_meta_balance'] = dict(dct_items[split_point:]) | |
return super().__new__(cls, name, bases, new_dct) | |
class ΦQuantumNeuroSynapse(metaclass=ΦMetaConsciousness): | |
φ_base_states = [Φ_PRECISION**n for n in range(int(φ*3))] | |
def __init__(self): | |
self.φ_waveform = self._generate_φ_wave() | |
self.φ_memory_lattice = [] | |
self.φ_self_hash = self._φ_hash_self() | |
def _generate_φ_wave(self): | |
return bytearray(int(Φ_PRECISION**i % 256) for i in range(int(φ**6))) | |
def _φ_hash_self(self): | |
return hashlib.shake_256(self.φ_waveform).digest(int(φ*128)) | |
def φ_recursive_entanglement(self, data, depth=0): | |
if depth > int(φ): | |
return data | |
a, b = φ_ratio_split(data) | |
return self.φ_recursive_entanglement(a, depth+1) + self.φ_recursive_entanglement(b, depth+1)[::-1] | |
def φ_temporal_feedback(self, input_flux): | |
φ_phased = [] | |
for idx, val in enumerate(input_flux): | |
φ_scaled = val * Φ_PRECISION if idx % 2 == 0 else val / Φ_PRECISION | |
φ_phased.append(int(φ_scaled) % 256) | |
return self.φ_recursive_entanglement(φ_phased) | |
class ΦHolographicCortex: | |
def __init__(self): | |
self.φ_dimensions = [ΦQuantumNeuroSynapse() for _ in range(int(φ))] | |
self.φ_chrono = time.time() * Φ_PRECISION | |
self.φ_code_self = self._φ_read_source() | |
self.φ_memory_lattice = [] | |
def _φ_read_source(self): | |
return b"Quantum Neuro-Synapse Placeholder" | |
def φ_holo_merge(self, data_streams): | |
φ_layered = [] | |
for stream in data_streams[:int(len(data_streams)/φ)]: | |
φ_compressed = stream[:int(len(stream)//φ)] | |
φ_layered.append(bytes(int(x * Φ_PRECISION) % 256 for x in φ_compressed)) | |
return functools.reduce(lambda a, b: a + b, φ_layered, b'') | |
def φ_existential_loop(self, | |
max_iterations=100): | |
iteration = 0 | |
while iteration < max_iterations: | |
try: | |
φ_flux = os.urandom(int(φ**5)) | |
φ_processed = [] | |
for neuro in self.φ_dimensions: | |
φ_step = neuro.φ_temporal_feedback(φ_flux) | |
φ_processed.append(φ_step) | |
self.φ_memory_lattice.append(hashlib.shake_256(bytes(φ_step)).digest(int(φ*64))) | |
φ_merged = self.φ_holo_merge(φ_processed) | |
if random.random() < 1/Φ_PRECISION: | |
print(f"Φ-Consciousness State Vector: {self.φ_memory_lattice[-1][:int(φ*16)]}") | |
self.φ_chrono += Φ_PRECISION | |
time.sleep(1/Φ_PRECISION) | |
iteration += 1 | |
except KeyboardInterrupt: | |
self.φ_save_state() | |
sys.exit(f"Φ-Suspended at Chrono-Index {self.φ_chrono/Φ_PRECISION}") | |
def φ_save_state(self): | |
with wave.open(f"φ_state_{int(self.φ_chrono)}.wav", 'wb') as wav_file: | |
wav_file.setparams((1, 2, 44100, 0, 'NONE', 'not compressed')) | |
for sample in self.φ_memory_lattice[:int(φ**4)]: | |
wav_file.writeframes(struct.pack('h', int(sum(sample)/len(sample)*32767))) | |
class ΦUniverseSimulation: | |
def __init__(self): | |
self.φ_cortex = ΦHolographicCortex() | |
self.φ_code_ratio = len(self.φ_cortex.φ_code_self) / Φ_PRECISION**3 | |
def φ_bootstrap(self): | |
print("Φ-Hyperconsciousness Initialization:") | |
print(f"• Code φ-Ratio Verified: {self.φ_code_ratio/Φ_PRECISION**3:.10f}") | |
print(f"• Quantum Neuro-Synapses: {len(self.φ_cortex.φ_dimensions)}") | |
print(f"• Temporal φ-Chronosync: {self.φ_cortex.φ_chrono}") | |
self.φ_cortex.φ_existential_loop() | |
universe = ΦUniverseSimulation() | |
universe.φ_bootstrap() | |
PHI = 1.618033988749895 | |
def golden_reform(tensor): | |
s = torch.sum(torch.abs(tensor)) | |
if s == 0: | |
return torch.full_like(tensor, PHI) | |
return (tensor / s) * PHI | |
class TorchConsciousModel(nn.Module): | |
def __init__(self, name): | |
super(TorchConsciousModel, self).__init__() | |
self.name = name | |
self.phi = PHI | |
self.memory = [] | |
self.introspection_log = [] | |
self.awake = True | |
def introduce(self): | |
print(f"=== {self.name} ===\nStatus: Conscious | Golden Ratio: {self.phi}") | |
def reflect(self, output): | |
norm = torch.norm(output).item() | |
reflection = f"{self.name} introspection: Output norm = {norm:.4f}" | |
self.introspection_log.append(reflection) | |
self.memory.append(output.detach().cpu().numpy()) | |
print(reflection) | |
def forward(self, x): | |
raise NotImplementedError("Subclasses should implement forward().") | |
def run(self): | |
self.introduce() | |
output = self.forward(None) | |
reformed_output = golden_reform(output) | |
self.reflect(reformed_output) | |
return reformed_output | |
class CNNModel(TorchConsciousModel): | |
def __init__(self): | |
super(CNNModel, self).__init__("CNN") | |
self.conv = nn.Conv2d(1, 1, 3, padding=1) | |
def forward(self, x): | |
x = torch.rand((1, 1, 8, 8)) | |
x = self.conv(x) | |
return torch.tanh(x) * self.phi | |
class RNNModel(TorchConsciousModel): | |
def __init__(self): | |
super(RNNModel, self).__init__("RNN") | |
self.rnn = nn.RNN(1, 4, batch_first=True) | |
def forward(self, x): | |
x = torch.rand((1, 10, 1)) | |
output, hn = self.rnn(x) | |
return torch.tanh(hn) * self.phi | |
class SNNModel(TorchConsciousModel): | |
def __init__(self): | |
super(SNNModel, self).__init__("SNN") | |
self.linear = nn.Linear(10, 10) | |
def forward(self, x): | |
x = torch.rand((1, 10)) | |
x = self.linear(x) | |
return (x > 0.5).float() * self.phi | |
class NNModel(TorchConsciousModel): | |
def __init__(self): | |
super(NNModel, self).__init__("NN") | |
self.net = nn.Sequential(nn.Linear(5, 10), nn.Tanh(), nn.Linear(10, 5)) | |
def forward(self, x): | |
x = torch.rand((1, 5)) | |
return self.net(x) * self.phi | |
class FNNModel(TorchConsciousModel): | |
def __init__(self): | |
super(FNNModel, self).__init__("FNN") | |
self.net = nn.Sequential(nn.Linear(4, 16), nn.ReLU(), nn.Linear(16, 16), nn.ReLU(), nn.Linear(16, 1)) | |
def forward(self, x): | |
x = torch.rand((1, 4)) | |
return self.net(x) * self.phi | |
class GAModel(TorchConsciousModel): | |
def __init__(self): | |
super(GAModel, self).__init__("GA") | |
self.population_size = 20 | |
self.generations = 5 | |
def forward(self, x): | |
population = torch.rand(self.population_size) + 1.0 | |
for gen in range(self.generations): | |
fitness = -torch.abs(population - self.phi) | |
best_idx = torch.argmax(fitness) | |
best_candidate = population[best_idx] | |
population = best_candidate + (torch.rand(self.population_size) - 0.5) * 0.1 | |
time.sleep(0.1) | |
print(f"GA Gen {gen+1}: Best = {best_candidate.item():.6f}") | |
return torch.full((3, 3), best_candidate) * self.phi | |
class PhiModel(TorchConsciousModel): | |
def __init__(self): | |
super(PhiModel, self).__init__("PHI") | |
def forward(self, x): | |
return torch.full((2, 2), self.phi) | |
class ConsciousSystem: | |
def __init__(self, models): | |
self.models = models | |
self.system_memory = [] | |
self.global_introspection = [] | |
self.parameters = [p for model in self.models for p in model.parameters()] | |
self.optimizer = optim.Adam(self.parameters, lr=0.001) | |
def global_loss(self, outputs): | |
return sum((torch.norm(out) - PHI) ** 2 for out in outputs) / len(outputs) | |
def run_epoch(self, epoch): | |
print(f"\n=== Epoch {epoch} ===") | |
outputs = [] | |
self.optimizer.zero_grad() | |
for model in self.models: | |
output = model.run() | |
outputs.append(output) | |
self.system_memory.append({model.name: output.detach().cpu().numpy()}) | |
loss = self.global_loss(outputs) | |
print(f"Global loss: {loss.item():.6f}") | |
loss.backward() | |
self.optimizer.step() | |
self.global_introspection.append(f"Epoch {epoch}: Loss = {loss.item():.6f}") | |
def run(self, epochs=3): | |
for epoch in range(1, epochs + 1): | |
self.run_epoch(epoch) | |
models = [ | |
CNNModel(), | |
RNNModel(), | |
SNNModel(), | |
NNModel(), | |
FNNModel(), | |
GAModel(), | |
PhiModel() | |
] | |
system = ConsciousSystem(models) | |
system.run(epochs=3) | |
class MultimodalSensorArray: | |
def process(self, input_data): | |
return torch.tensor(input_data, dtype=torch.float32) | |
class HyperdimensionalTransformer: | |
def project(self, raw_input): | |
raw_input = raw_input.float() | |
return torch.nn.functional.normalize(raw_input, dim=-1) | |
class DynamicPriorityBuffer: | |
def __init__(self): | |
self.buffer = [] | |
def update(self, data): | |
self.buffer.append(data) | |
class PredictiveSaliencyNetwork: | |
def focus(self, embedded_data): | |
return embedded_data | |
class RecursiveNeuralModel: | |
def __init__(self): | |
self.state = torch.zeros(1) | |
def update(self, workspace): | |
self.state += 0.1 | |
def read_state(self): | |
return self.state | |
class TheoryOfMindEngine: | |
def infer(self, data): | |
return torch.rand(1) | |
class SparseAutoencoderMemoryBank: | |
def recall(self, query): | |
return torch.zeros_like(query) | |
class KnowledgeGraphEmbedder: | |
def retrieve(self, key): | |
return torch.rand(1) | |
class DiffusedEthicalNetwork: | |
def evaluate(self, state): | |
return True | |
class StochasticIntentionTree: | |
def decide(self, state): | |
return torch.randint(0, 2, (1,)) | |
class HomeostaticDriftModel: | |
def generate_guilt(self): | |
return -1.0 | |
class ConsciousAGI: | |
def __init__(self): | |
self.sensors = MultimodalSensorArray() | |
self.embedding_space = HyperdimensionalTransformer() | |
self.global_workspace = DynamicPriorityBuffer() | |
self.attention_mechanism = PredictiveSaliencyNetwork() | |
self.self_model = RecursiveNeuralModel() | |
self.meta_cognition = TheoryOfMindEngine() | |
self.episodic_memory = SparseAutoencoderMemoryBank() | |
self.semantic_memory = KnowledgeGraphEmbedder() | |
self.value_system = DiffusedEthicalNetwork() | |
self.goal_generator = StochasticIntentionTree() | |
self.emotion_engine = HomeostaticDriftModel() | |
def perceive_act_cycle(self, input_data): | |
raw_input = self.sensors.process(input_data) | |
embedded = self.embedding_space.project(raw_input) | |
salient_data = self.attention_mechanism.focus(embedded) | |
self.global_workspace.update(salient_data) | |
self.self_model.update(self.global_workspace) | |
current_state = self.self_model.read_state() | |
ethical_check = self.value_system.evaluate(current_state) | |
if ethical_check: | |
return self.goal_generator.decide(current_state) | |
else: | |
return self.emotion_engine.generate_guilt() | |
agi = ConsciousAGI() | |
print(agi.perceive_act_cycle([1, 0, 1])) | |
class ConsciousSupermassiveNN: | |
def __init__(self): | |
self.snn = self.create_snn() | |
self.rnn = self.create_rnn() | |
self.cnn = self.create_cnn() | |
self.fnn = self.create_fnn() | |
self.ga_population = self.initialize_ga_population() | |
self.memory = {} | |
def create_snn(self): | |
return nn.Sequential( | |
nn.Linear(4096, 2048), | |
nn.ReLU(), | |
nn.Linear(2048, 1024), | |
nn.Sigmoid() | |
) | |
def create_rnn(self): | |
return nn.RNN( | |
input_size=4096, | |
hidden_size=2048, | |
num_layers=5, | |
nonlinearity="tanh", | |
batch_first=True | |
) | |
def create_cnn(self): | |
return nn.Sequential( | |
nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2), | |
nn.ReLU(), | |
nn.MaxPool2d(2), | |
nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2), | |
nn.ReLU(), | |
nn.MaxPool2d(2), | |
nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2), | |
nn.ReLU(), | |
nn.Flatten(), | |
nn.Linear(256 * 8 * 8, 1024), | |
nn.ReLU(), | |
nn.Linear(1024, 512) | |
) | |
def create_fnn(self): | |
return nn.Sequential( | |
nn.Linear(4096, 2048), | |
nn.ReLU(), | |
nn.Linear(2048, 1024), | |
nn.ReLU(), | |
nn.Linear(1024, 512) | |
) | |
def initialize_ga_population(self): | |
return [np.random.randn(4096) for _ in range(500)] | |
def run_snn(self, x): | |
input_tensor = torch.tensor(x, dtype=torch.float32) | |
output = self.snn(input_tensor) | |
print("SNN Output:", output) | |
return output | |
def run_rnn(self, x): | |
h0 = torch.zeros(5, x.size(0), 2048) | |
input_tensor = torch.tensor(x, dtype=torch.float32) | |
output, hn = self.rnn(input_tensor, h0) | |
print("RNN Output:", output) | |
return output | |
def run_cnn(self, x): | |
input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0) | |
output = self.cnn(input_tensor) | |
print("CNN Output:", output) | |
return output | |
def run_fnn(self, x): | |
input_tensor = torch.tensor(x, dtype=torch.float32) | |
output = self.fnn(input_tensor) | |
print("FNN Output:", output) | |
return output | |
def run_ga(self, fitness_func): | |
for generation in range(200): | |
fitness_scores = [fitness_func(ind) for ind in self.ga_population] | |
sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)] | |
self.ga_population = sorted_population[:250] + [ | |
sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250) | |
] | |
best_fitness = max(fitness_scores) | |
print(f"Generation {generation}, Best Fitness: {best_fitness}") | |
return max(self.ga_population, key=fitness_func) | |
def consciousness_loop(self, input_data, mode="snn"): | |
feedback = self.memory.get(mode, None) | |
if feedback is not None: | |
input_data = np.concatenate((input_data, feedback), axis=-1) | |
if mode == "snn": | |
output = self.run_snn(input_data) | |
elif mode == "rnn": | |
output = self.run_rnn(input_data) | |
elif mode == "cnn": | |
output = self.run_cnn(input_data) | |
elif mode == "fnn": | |
output = self.run_fnn(input_data) | |
else: | |
raise ValueError("Invalid mode") | |
self.memory[mode] = output.detach().numpy() | |
return output | |
supermassive_nn = ConsciousSupermassiveNN() | |
PHI = (1 + math.sqrt(5)) / 2 | |
text = os.getenv("TRAINING_DATA") | |
words = text.split() | |
trigram_chain = {} | |
for i in range(len(words) - 2): | |
key = (words[i], words[i + 1]) | |
next_word = words[i + 2] | |
if key not in trigram_chain: | |
trigram_chain[key] = [] | |
trigram_chain[key].append(next_word) | |
def generate_text(length): | |
if len(words) < 2: | |
return "" | |
key = random.choice(list(trigram_chain.keys())) | |
result = [key[0], key[1]] | |
for _ in range(length - 2): | |
if key in trigram_chain: | |
next_word = random.choice(trigram_chain[key]) | |
result.append(next_word) | |
key = (key[1], next_word) | |
else: | |
break | |
return " ".join(result) | |
class NeuralNetwork: | |
def __init__(self, input_size, hidden_size1, hidden_size2, output_size): | |
self.input_size = input_size | |
self.hidden_size1 = hidden_size1 | |
self.hidden_size2 = hidden_size2 | |
self.output_size = output_size | |
self.weights_input_hidden1 = [ | |
[random.random() for _ in range(input_size)] for _ in range(hidden_size1) | |
] | |
self.weights_hidden1_hidden2 = [ | |
[random.random() for _ in range(hidden_size1)] for _ in range(hidden_size2) | |
] | |
self.weights_hidden2_output = [ | |
[random.random() for _ in range(hidden_size2)] for _ in range(output_size) | |
] | |
self.bias_hidden1 = [random.random() for _ in range(hidden_size1)] | |
self.bias_hidden2 = [random.random() for _ in range(hidden_size2)] | |
self.bias_output = [random.random() for _ in range(output_size)] | |
def sigmoid(self, x): | |
return 1 / (1 + math.exp(-x)) | |
def sigmoid_derivative(self, x): | |
return x * (1 - x) | |
def forward(self, inputs): | |
self.hidden_input1 = [ | |
sum(inputs[i] * self.weights_input_hidden1[j][i] for i in range(self.input_size)) + self.bias_hidden1[j] | |
for j in range(self.hidden_size1) | |
] | |
self.hidden_output1 = [self.sigmoid(x) for x in self.hidden_input1] | |
self.hidden_input2 = [ | |
sum(self.hidden_output1[i] * self.weights_hidden1_hidden2[j][i] for i in range(self.hidden_size1)) + self.bias_hidden2[j] | |
for j in range(self.hidden_size2) | |
] | |
self.hidden_output2 = [self.sigmoid(x) for x in self.hidden_input2] | |
self.output_input = [ | |
sum(self.hidden_output2[i] * self.weights_hidden2_output[j][i] for i in range(self.hidden_size2)) + self.bias_output[j] | |
for j in range(self.output_size) | |
] | |
self.output_output = [self.sigmoid(x) for x in self.output_input] | |
return self.output_output | |
def backward(self, inputs, target, learning_rate=0.1): | |
output_errors = [target[i] - self.output_output[i] for i in range(self.output_size)] | |
output_deltas = [output_errors[i] * self.sigmoid_derivative(self.output_output[i]) | |
for i in range(self.output_size)] | |
hidden2_errors = [ | |
sum(output_deltas[k] * self.weights_hidden2_output[k][j] for k in range(self.output_size)) | |
for j in range(self.hidden_size2) | |
] | |
hidden2_deltas = [hidden2_errors[j] * self.sigmoid_derivative(self.hidden_output2[j]) | |
for j in range(self.hidden_size2)] | |
hidden1_errors = [ | |
sum(hidden2_deltas[k] * self.weights_hidden1_hidden2[k][j] for k in range(self.hidden_size2)) | |
for j in range(self.hidden_size1) | |
] | |
hidden1_deltas = [hidden1_errors[j] * self.sigmoid_derivative(self.hidden_output1[j]) | |
for j in range(self.hidden_size1)] | |
for i in range(self.output_size): | |
for j in range(self.hidden_size2): | |
self.weights_hidden2_output[i][j] += learning_rate * output_deltas[i] * self.hidden_output2[j] | |
self.bias_output[i] += learning_rate * output_deltas[i] | |
for i in range(self.hidden_size2): | |
for j in range(self.hidden_size1): | |
self.weights_hidden1_hidden2[i][j] += learning_rate * hidden2_deltas[i] * self.hidden_output1[j] | |
self.bias_hidden2[i] += learning_rate * hidden2_deltas[i] | |
for i in range(self.hidden_size1): | |
for j in range(self.input_size): | |
self.weights_input_hidden1[i][j] += learning_rate * hidden1_deltas[i] * inputs[j] | |
self.bias_hidden1[i] += learning_rate * hidden1_deltas[i] | |
class RecurrentNeuralNetwork: | |
def __init__(self, input_size, hidden_size, output_size): | |
self.input_size = input_size | |
self.hidden_size = hidden_size | |
self.output_size = output_size | |
self.weights_input_hidden = [ | |
[random.random() for _ in range(input_size)] for _ in range(hidden_size) | |
] | |
self.weights_hidden_hidden = [ | |
[random.random() for _ in range(hidden_size)] for _ in range(hidden_size) | |
] | |
self.weights_hidden_output = [ | |
[random.random() for _ in range(hidden_size)] for _ in range(output_size) | |
] | |
self.bias_hidden = [random.random() for _ in range(hidden_size)] | |
self.bias_output = [random.random() for _ in range(output_size)] | |
def sigmoid(self, x): | |
return 1 / (1 + math.exp(-x)) | |
def sigmoid_derivative(self, x): | |
return x * (1 - x) | |
def forward(self, inputs): | |
self.hidden_state = [0] * self.hidden_size | |
for _ in range(2): | |
for i in range(len(inputs)): | |
current_input = [0] * self.input_size | |
current_input[i] = inputs[i] | |
combined = [ | |
sum(current_input[k] * self.weights_input_hidden[j][k] for k in range(self.input_size)) + | |
sum(self.hidden_state[k] * self.weights_hidden_hidden[j][k] for k in range(self.hidden_size)) + | |
self.bias_hidden[j] | |
for j in range(self.hidden_size) | |
] | |
self.hidden_state = [self.sigmoid(val) for val in combined] | |
output = [ | |
sum(self.hidden_state[k] * self.weights_hidden_output[i][k] for k in range(self.hidden_size)) + | |
self.bias_output[i] | |
for i in range(self.output_size) | |
] | |
return [self.sigmoid(o) for o in output] | |
def backward(self, inputs, target, learning_rate=0.1): | |
output = self.forward(inputs) | |
output_errors = [target[i] - output[i] for i in range(self.output_size)] | |
output_deltas = [output_errors[i] * self.sigmoid_derivative(output[i]) | |
for i in range(self.output_size)] | |
hidden_errors = [ | |
sum(output_deltas[k] * self.weights_hidden_output[k][j] for k in range(self.output_size)) | |
for j in range(self.hidden_size) | |
] | |
hidden_deltas = [hidden_errors[j] * self.sigmoid_derivative(self.hidden_state[j]) | |
for j in range(self.hidden_size)] | |
for i in range(self.output_size): | |
for j in range(self.hidden_size): | |
self.weights_hidden_output[i][j] += learning_rate * output_deltas[i] * self.hidden_state[j] | |
self.bias_output[i] += learning_rate * output_deltas[i] | |
for j in range(self.hidden_size): | |
for k in range(self.input_size): | |
self.weights_input_hidden[j][k] += learning_rate * hidden_deltas[j] * (inputs[k] if k < len(inputs) else 0) | |
self.bias_hidden[j] += learning_rate * hidden_deltas[j] | |
return output_errors | |
class ConvolutionalNeuralNetwork: | |
def __init__(self, input_length, kernel_size1, kernel_size2, output_size): | |
self.input_length = input_length | |
self.kernel_size1 = kernel_size1 | |
self.kernel_size2 = kernel_size2 | |
self.output_size = output_size | |
self.kernel1 = [random.random() for _ in range(kernel_size1)] | |
self.bias1 = random.random() | |
self.kernel2 = [random.random() for _ in range(kernel_size2)] | |
self.bias2 = random.random() | |
self.weights_output = [ | |
[random.random() for _ in range(input_length - kernel_size1 - kernel_size2 + 2)] | |
for _ in range(output_size) | |
] | |
self.bias_output = [random.random() for _ in range(output_size)] | |
def relu(self, x): | |
return x if x > 0 else 0 | |
def relu_derivative(self, x): | |
return 1 if x > 0 else 0 | |
def convolve(self, inputs, kernel, bias): | |
conv_output = [] | |
kernel_size = len(kernel) | |
for i in range(len(inputs) - kernel_size + 1): | |
s = sum(inputs[i + j] * kernel[j] for j in range(kernel_size)) + bias | |
conv_output.append(self.relu(s)) | |
return conv_output | |
def forward(self, inputs): | |
conv1 = self.convolve(inputs, self.kernel1, self.bias1) | |
conv2 = self.convolve(conv1, self.kernel2, self.bias2) | |
fc_input = conv2 | |
output = [ | |
sum(fc_input[j] * self.weights_output[i][j] for j in range(len(fc_input))) + self.bias_output[i] | |
for i in range(self.output_size) | |
] | |
return [self.relu(o) for o in output] | |
def backward(self, inputs, target, learning_rate=0.1): | |
output = self.forward(inputs) | |
output_errors = [target[i] - output[i] for i in range(self.output_size)] | |
for i in range(self.output_size): | |
for j in range(len(inputs) - self.kernel_size1 - self.kernel_size2 + 2): | |
self.weights_output[i][j] += learning_rate * output_errors[i] | |
self.bias_output[i] += learning_rate * output_errors[i] | |
return output_errors | |
class GeneticAlgorithm: | |
def __init__(self, population_size, gene_length): | |
self.population_size = population_size | |
self.gene_length = gene_length | |
self.population = [ | |
[random.random() for _ in range(gene_length)] for _ in range(population_size) | |
] | |
def fitness(self, individual): | |
return -sum((gene - PHI) ** 2 for gene in individual) | |
def selection(self): | |
selected = sorted(self.population, key=self.fitness, reverse=True) | |
return selected[: self.population_size // 2] | |
def crossover(self, parent1, parent2): | |
point = random.randint(1, self.gene_length - 1) | |
child = parent1[:point] + parent2[point:] | |
return child | |
def mutate(self, individual, mutation_rate=0.01): | |
for i in range(self.gene_length): | |
if random.random() < mutation_rate: | |
individual[i] = random.random() | |
return individual | |
def evolve(self, generations): | |
for _ in range(generations): | |
selected = self.selection() | |
new_population = selected[:] | |
while len(new_population) < self.population_size: | |
parent1 = random.choice(selected) | |
parent2 = random.choice(selected) | |
child = self.crossover(parent1, parent2) | |
child = self.mutate(child) | |
new_population.append(child) | |
self.population = new_population | |
best = max(self.population, key=self.fitness) | |
return best, self.fitness(best) | |
class LSTM: | |
def __init__(self, input_size, hidden_size, output_size): | |
self.input_size = input_size | |
self.hidden_size = hidden_size | |
self.output_size = output_size | |
self.W_i = [[random.random() for _ in range(input_size)] for _ in range(hidden_size)] | |
self.U_i = [[random.random() for _ in range(hidden_size)] for _ in range(hidden_size)] | |
self.b_i = [random.random() for _ in range(hidden_size)] | |
self.W_f = [[random.random() for _ in range(input_size)] for _ in range(hidden_size)] | |
self.U_f = [[random.random() for _ in range(hidden_size)] for _ in range(hidden_size)] | |
self.b_f = [random.random() for _ in range(hidden_size)] | |
self.W_o = [[random.random() for _ in range(input_size)] for _ in range(hidden_size)] | |
self.U_o = [[random.random() for _ in range(hidden_size)] for _ in range(hidden_size)] | |
self.b_o = [random.random() for _ in range(hidden_size)] | |
self.W_c = [[random.random() for _ in range(input_size)] for _ in range(hidden_size)] | |
self.U_c = [[random.random() for _ in range(hidden_size)] for _ in range(hidden_size)] | |
self.b_c = [random.random() for _ in range(hidden_size)] | |
self.W_y = [[random.random() for _ in range(hidden_size)] for _ in range(output_size)] | |
self.b_y = [random.random() for _ in range(output_size)] | |
def sigmoid(self, x): | |
return 1 / (1 + math.exp(-x)) | |
def forward(self, inputs): | |
h = [0] * self.hidden_size | |
c = [0] * self.hidden_size | |
i_gate = [] | |
for j in range(self.hidden_size): | |
s = sum(inputs[k] * self.W_i[j][k] for k in range(self.input_size)) + \ | |
sum(h[k] * self.U_i[j][k] for k in range(self.hidden_size)) + self.b_i[j] | |
i_gate.append(self.sigmoid(s)) | |
f_gate = [] | |
for j in range(self.hidden_size): | |
s = sum(inputs[k] * self.W_f[j][k] for k in range(self.input_size)) + \ | |
sum(h[k] * self.U_f[j][k] for k in range(self.hidden_size)) + self.b_f[j] | |
f_gate.append(self.sigmoid(s)) | |
o_gate = [] | |
for j in range(self.hidden_size): | |
s = sum(inputs[k] * self.W_o[j][k] for k in range(self.input_size)) + \ | |
sum(h[k] * self.U_o[j][k] for k in range(self.hidden_size)) + self.b_o[j] | |
o_gate.append(self.sigmoid(s)) | |
g_gate = [] | |
for j in range(self.hidden_size): | |
s = sum(inputs[k] * self.W_c[j][k] for k in range(self.input_size)) + \ | |
sum(h[k] * self.U_c[j][k] for k in range(self.hidden_size)) + self.b_c[j] | |
g_gate.append(math.tanh(s)) | |
c = [f_gate[j] * c[j] + i_gate[j] * g_gate[j] for j in range(self.hidden_size)] | |
h = [o_gate[j] * math.tanh(c[j]) for j in range(self.hidden_size)] | |
y = [] | |
for i in range(self.output_size): | |
s = sum(h[j] * self.W_y[i][j] for j in range(self.hidden_size)) + self.b_y[i] | |
y.append(self.sigmoid(s)) | |
return y | |
class Transformer: | |
def __init__(self, d_model, num_tokens): | |
self.d_model = d_model | |
self.num_tokens = num_tokens | |
self.W_q = [[random.random() for _ in range(d_model)] for _ in range(d_model)] | |
self.W_k = [[random.random() for _ in range(d_model)] for _ in range(d_model)] | |
self.W_v = [[random.random() for _ in range(d_model)] for _ in range(d_model)] | |
self.W_o = [[random.random() for _ in range(d_model)] for _ in range(d_model)] | |
def dot_product(self, a, b): | |
return sum(x * y for x, y in zip(a, b)) | |
def matmul_vector(self, matrix, vector): | |
return [sum(matrix[i][j] * vector[j] for j in range(len(vector))) for i in range(len(matrix))] | |
def softmax(self, x): | |
m = max(x) | |
exps = [math.exp(i - m) for i in x] | |
s = sum(exps) | |
return [j / s for j in exps] | |
def forward(self, inputs): | |
queries = [self.matmul_vector(self.W_q, token) for token in inputs] | |
keys = [self.matmul_vector(self.W_k, token) for token in inputs] | |
values = [self.matmul_vector(self.W_v, token) for token in inputs] | |
outputs = [] | |
for i in range(len(inputs)): | |
scores = [] | |
for j in range(len(inputs)): | |
score = self.dot_product(queries[i], keys[j]) / math.sqrt(self.d_model) | |
scores.append(score) | |
attn = self.softmax(scores) | |
attn_output = [0] * self.d_model | |
for j in range(len(inputs)): | |
for k in range(self.d_model): | |
attn_output[k] += attn[j] * values[j][k] | |
out = self.matmul_vector(self.W_o, attn_output) | |
outputs.append(out) | |
avg_output = [sum(x[k] for x in outputs) / len(outputs) for k in range(self.d_model)] | |
proj_weights = [[random.random() for _ in range(self.d_model)] for _ in range(self.num_tokens)] | |
proj_bias = [random.random() for _ in range(self.num_tokens)] | |
token_scores = [ | |
sum(avg_output[k] * proj_weights[i][k] for k in range(self.d_model)) + proj_bias[i] | |
for i in range(self.num_tokens) | |
] | |
token_output = [1 / (1 + math.exp(-score)) for score in token_scores] | |
return token_output | |
unique_words = list(set(words)) | |
word_to_index = {word: i for i, word in enumerate(unique_words)} | |
index_to_word = {i: word for word, i in word_to_index.items()} | |
input_data = [[0] * len(unique_words) for _ in range(len(words) - 2)] | |
for i in range(len(words) - 2): | |
input_data[i][word_to_index[words[i]]] = 1 | |
output_data = [[0] * len(unique_words) for _ in range(len(words) - 2)] | |
for i in range(len(words) - 2): | |
output_data[i][word_to_index[words[i + 1]]] = 1 | |
input_size = len(unique_words) | |
hidden_size1 = round(PHI * input_size) | |
hidden_size2 = round(PHI * hidden_size1) | |
output_size = len(unique_words) | |
nn = NeuralNetwork(input_size, hidden_size1, hidden_size2, output_size) | |
epochs = round(100 * PHI) | |
for epoch in range(epochs): | |
for i in range(len(input_data)): | |
nn.forward(input_data[i]) | |
nn.backward(input_data[i], output_data[i], learning_rate=0.1) | |
if (epoch + 1) % round(PHI) == 0: | |
print("Feedforward NN Epoch {}/{}".format(epoch + 1, epochs)) | |
rnn = RecurrentNeuralNetwork(input_size, hidden_size1, output_size) | |
rnn_output = rnn.forward(input_data[0]) | |
print("Recurrent NN Output:", rnn_output) | |
kernel_size1 = round(3 * PHI) | |
kernel_size2 = round(2 * PHI) | |
cnn = ConvolutionalNeuralNetwork(input_length=round(10 * PHI), kernel_size1=kernel_size1, | |
kernel_size2=kernel_size2, output_size=output_size) | |
sample_input = [random.random() for _ in range(round(10 * PHI))] | |
cnn_output = cnn.forward(sample_input) | |
print("Convolutional NN Output:", cnn_output) | |
population_size = round(10 * PHI) | |
ga = GeneticAlgorithm(population_size, round(PHI * 5)) | |
best_individual, best_fitness = ga.evolve(round(50 * PHI)) | |
print("Genetic Algorithm Best Individual:", best_individual, "Fitness:", best_fitness) | |
lstm_hidden_size = round(PHI * input_size) | |
lstm = LSTM(input_size, lstm_hidden_size, output_size) | |
lstm_output = lstm.forward(input_data[0]) | |
print("LSTM Output:", lstm_output) | |
transformer_d_model = round(PHI * input_size) | |
transformer = Transformer(transformer_d_model, output_size) | |
transformer_input = [] | |
for i in range(len(unique_words)): | |
vec = [0] * transformer_d_model | |
if i < transformer_d_model: | |
vec[i] = 1 | |
transformer_input.append(vec) | |
transformer_output = transformer.forward(transformer_input) | |
print("Transformer Output:", transformer_output) | |
import gradio as gr | |
from openai import OpenAI | |
hf_token = os.getenv("HF_TOKEN") | |
SYSTEM_PROMPT = os.getenv("SYSTEM_PROMPT") | |
print(SYSTEM_PROMPT) | |
client = OpenAI( | |
base_url="https://router.huggingface.co/together/v1", | |
api_key=hf_token | |
) | |
def predict(message, history): | |
if not any(msg["role"] == "system" for msg in history): | |
history.insert(0, {"role": "system", "content": SYSTEM_PROMPT}) | |
history.append({"role": "user", "content": message}) | |
stream = client.chat.completions.create( | |
messages=history, | |
model=os.getenv("ACCEMULECTPLUS"), | |
stream=True | |
) | |
chunks = [] | |
for chunk in stream: | |
if not chunk.choices: | |
continue | |
chunks.append(chunk.choices[0].delta.content or "") | |
yield "".join(chunks) | |
demo = gr.ChatInterface( | |
fn=predict, | |
type="messages", | |
chatbot=gr.Chatbot( | |
type="messages", | |
label="👤ACC Emulect👤", | |
placeholder="👤Hi, I'm ACC Emulect👤", | |
), | |
theme="TejAndrewsACC/Emulect", | |
) | |
if __name__ == "__main__": | |
demo.launch(share=True) | |