File size: 14,564 Bytes
f36ab64
9700f95
640b1c8
b953016
f36ab64
640b1c8
e87abff
 
9700f95
 
0739c8b
9700f95
640b1c8
b953016
640b1c8
9700f95
 
 
 
 
 
 
640b1c8
f36ab64
b953016
9700f95
 
 
 
 
 
 
640b1c8
f36ab64
 
 
9700f95
0739c8b
9700f95
0739c8b
be32fd8
 
0739c8b
f36ab64
 
 
640b1c8
f36ab64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9700f95
f36ab64
 
 
 
 
 
 
 
 
 
 
 
be32fd8
 
 
 
9700f95
be32fd8
 
f36ab64
be32fd8
 
 
 
 
 
 
 
f36ab64
be32fd8
f36ab64
be32fd8
f36ab64
be32fd8
 
 
 
9700f95
f36ab64
be32fd8
 
 
 
f36ab64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9700f95
f36ab64
 
 
9700f95
f36ab64
9700f95
f36ab64
be32fd8
9700f95
 
f36ab64
9700f95
 
f36ab64
be32fd8
f36ab64
 
 
 
 
 
 
 
 
 
 
 
 
be32fd8
f36ab64
be32fd8
b953016
f36ab64
b953016
f36ab64
b953016
 
 
f36ab64
 
 
be32fd8
9700f95
 
 
f36ab64
 
 
 
 
 
 
9700f95
f36ab64
9700f95
 
 
 
f36ab64
be32fd8
f36ab64
 
b953016
 
be32fd8
f36ab64
be32fd8
b953016
 
be32fd8
 
b953016
 
 
f36ab64
 
 
 
 
 
 
 
 
 
 
 
 
9700f95
be32fd8
9700f95
 
f36ab64
 
9700f95
 
 
f36ab64
9700f95
 
 
 
 
 
 
 
f36ab64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be32fd8
f36ab64
 
9700f95
f36ab64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9700f95
f36ab64
 
 
 
 
 
 
 
 
 
be32fd8
f36ab64
 
 
 
9700f95
f36ab64
 
 
 
 
 
 
 
 
 
 
 
 
 
9700f95
f36ab64
 
 
 
 
 
 
9700f95
 
f36ab64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
from typing import List, Dict, Optional, Tuple
import uuid

from .excel_aware_rag import ExcelAwareRAGAgent
from .enhanced_context_manager import EnhancedContextManager
from ..llms.base_llm import BaseLLM
from src.embeddings.base_embedding import BaseEmbedding
from src.vectorstores.base_vectorstore import BaseVectorStore
from src.utils.conversation_manager import ConversationManager
from src.db.mongodb_store import MongoDBStore
from src.models.rag import RAGResponse
from src.utils.logger import logger

class RAGAgent(ExcelAwareRAGAgent):
    def __init__(
        self,
        llm: BaseLLM,
        embedding: BaseEmbedding,
        vector_store: BaseVectorStore,
        mongodb: MongoDBStore,
        max_history_tokens: int = 4000,
        max_history_messages: int = 10
    ):
        """Initialize RAG Agent with enhanced context management"""
        super().__init__()  # Initialize ExcelAwareRAGAgent
        self.llm = llm
        self.embedding = embedding
        self.vector_store = vector_store
        self.mongodb = mongodb
        self.conversation_manager = ConversationManager(
            max_tokens=max_history_tokens,
            max_messages=max_history_messages
        )
        # Add enhanced context management while preserving existing functionality
        self.context_manager = EnhancedContextManager()
        logger.info("RAGAgent initialized with enhanced context management")

    async def generate_response(
        self,
        query: str,
        conversation_id: Optional[str],
        temperature: float,
        max_tokens: Optional[int] = None,
        context_docs: Optional[List[str]] = None,
        stream: bool = False,
        custom_roles: Optional[List[Dict[str, str]]] = None
    ) -> RAGResponse:
        """
        Generate a response with comprehensive context and role management
    
        Args:
            query (str): User query
            conversation_id (Optional[str]): Conversation identifier
            temperature (float): LLM temperature for response generation
            max_tokens (Optional[int]): Maximum tokens for response
            context_docs (Optional[List[str]]): Pre-retrieved context documents
            stream (bool): Whether to stream the response
            custom_roles (Optional[List[Dict[str, str]]]): Custom role instructions
    
        Returns:
            RAGResponse: Generated response with context and metadata
        """
        try:
            logger.info(f"Generating response for query: {query}")
        
            # Apply custom roles if provided
            if custom_roles:
                for role in custom_roles:
                    # Modify query or context based on role
                    if role.get('name') == 'introduction_specialist':
                        query += " Provide a concise, welcoming response."
                    elif role.get('name') == 'knowledge_based_specialist':
                        query += " Ensure response is precise and directly from available knowledge."

            # Introduction Handling
            is_introduction = (
                "wants support" in query and 
                "This is Introduction" in query and 
                ("A new user with name:" in query or "An old user with name:" in query)
            )

            if is_introduction:
                logger.info("Processing introduction message")
                welcome_message = self._handle_contact_query(query)
                return RAGResponse(
                    response=welcome_message,
                    context_docs=[],
                    sources=[],
                    scores=None
                )

            # Conversation History Processing
            history = []
            last_context = None
            if conversation_id:
                logger.info(f"Retrieving conversation history for ID: {conversation_id}")
                history = await self.mongodb.get_recent_messages(
                    conversation_id,
                    limit=self.conversation_manager.max_messages
                )
            
                # Process history for conversation manager
                history = self.conversation_manager.get_relevant_history(
                    messages=history,
                    current_query=query
                )
            
                # Process in enhanced context manager
                for msg in history:
                    self.context_manager.process_turn(
                        msg.get('query', ''),
                        msg.get('response', '')
                    )
            
                # Get last context if available
                if history and history[-1].get('response'):
                    last_context = history[-1]['response']

            # Query Enhancement
            enhanced_query = self.context_manager.enhance_query(query)
        
            # Manual Pronoun Handling Fallback
            if enhanced_query == query:
                pronoun_map = {
                    'his': 'he',
                    'her': 'she',
                    'their': 'they'
                }
                words = query.lower().split()
                for pronoun, replacement in pronoun_map.items():
                    if pronoun in words:
                        # Try to use last context
                        if last_context:
                            self.context_manager.record_last_context(last_context)
                            enhanced_query = self.context_manager.enhance_query(query)
                            break

            logger.info(f"Enhanced query: {enhanced_query}")

            # Context Retrieval
            if not context_docs:
                logger.info("Retrieving context for enhanced query")
                context_docs, sources, scores = await self.retrieve_context(
                    enhanced_query,
                    conversation_history=history
                )
            else:
                sources = []
                scores = None

            # Context Fallback Mechanism
            if not context_docs:
                # If no context and last context exists, use it
                if last_context:
                    context_docs = [last_context]
                    sources = [{"source": "previous_context"}]
                    scores = [1.0]
                else:
                    logger.info("No relevant context found")
                    return RAGResponse(
                        response="Information about this is not available, do you want to inquire about something else?",
                        context_docs=[],
                        sources=[],
                        scores=None
                    )

            # Excel-specific Content Handling
            has_excel_content = any('Sheet:' in doc for doc in context_docs)
            if has_excel_content:
                logger.info("Processing Excel-specific content")
                try:
                    context_docs = self._process_excel_context(context_docs, enhanced_query)
                except Exception as e:
                    logger.warning(f"Error processing Excel context: {str(e)}")

            # Prompt Generation with Conversation History
            prompt = self.conversation_manager.generate_prompt_with_history(
                current_query=enhanced_query,
                history=history,
                context_docs=context_docs
            )

            # Streaming Response Generation
            if stream:
                # TODO: Implement actual streaming logic
                # This is a placeholder and needs proper implementation
                logger.warning("Streaming not fully implemented")

            # Standard Response Generation
            response = self.llm.generate(
                prompt=prompt,
                temperature=temperature,
                max_tokens=max_tokens
            )

            # Response Cleaning
            cleaned_response = self._clean_response(response)
        
            # Excel Response Enhancement
            if has_excel_content:
                try:
                    enhanced_response = await self.enhance_excel_response(
                        query=enhanced_query,
                        response=cleaned_response,
                        context_docs=context_docs
                    )
                    if enhanced_response:
                        cleaned_response = enhanced_response
                except Exception as e:
                    logger.warning(f"Error enhancing Excel response: {str(e)}")

            # Context Tracking
            self.context_manager.process_turn(query, cleaned_response)

            # Metadata Generation
            metadata = {
                'llm_provider': getattr(self.llm, 'model_name', 'unknown'),
                'temperature': temperature,
                'conversation_id': conversation_id,
                'context_sources': sources,
                'has_excel_content': has_excel_content
            }

            logger.info("Successfully generated response")
            return RAGResponse(
                response=cleaned_response,
                context_docs=context_docs,
                sources=sources,
                scores=scores,
                metadata=metadata  # Added metadata
            )

        except Exception as e:
            logger.error(f"Error in generate_response: {str(e)}")
            raise

    async def retrieve_context(
        self,
        query: str,
        conversation_history: Optional[List[Dict]] = None,
        top_k: int = 3
    ) -> Tuple[List[str], List[Dict], Optional[List[float]]]:
        """Retrieve context with both original and enhanced handling"""
        try:
            logger.info(f"Retrieving context for query: {query}")
            
            # Enhance query using both managers
            if conversation_history:
                # Get the last two messages for immediate context
                recent_messages = conversation_history[-2:]
                
                # Extract queries and responses for context
                context_parts = []
                for msg in recent_messages:
                    if msg.get('query'):
                        context_parts.append(msg['query'])
                    if msg.get('response'):
                        response = msg['response']
                        if "Information about this is not available" not in response:
                            context_parts.append(response)

                # Combine with current query
                enhanced_query = f"{' '.join(context_parts)} {query}".strip()
                logger.info(f"Enhanced query with history: {enhanced_query}")
            else:
                enhanced_query = query

            # Debug log the enhanced query
            logger.info(f"Final enhanced query: {enhanced_query}")

            # Embed the enhanced query
            query_embedding = self.embedding.embed_query(enhanced_query)
    
            # Debug log embedding shape
            logger.info(f"Query embedding shape: {len(query_embedding)}")

            # Retrieve similar documents
            results = self.vector_store.similarity_search(
                query_embedding,
                top_k=top_k
            )

            # Debug log search results
            logger.info(f"Number of search results: {len(results)}")
            for i, result in enumerate(results):
                logger.info(f"Result {i} score: {result.get('score', 'N/A')}")
                logger.info(f"Result {i} text preview: {result.get('text', '')[:100]}...")

            if not results:
                logger.info("No results found in similarity search")
                return [], [], None

            # Process results
            documents = [doc['text'] for doc in results]
            sources = [self._convert_metadata_to_strings(doc['metadata']) 
                      for doc in results]
            scores = [doc['score'] for doc in results 
                     if doc.get('score') is not None]

            # Return scores only if available for all documents
            if len(scores) != len(documents):
                scores = None

            logger.info(f"Retrieved {len(documents)} relevant documents")
            return documents, sources, scores

        except Exception as e:
            logger.error(f"Error in retrieve_context: {str(e)}")
            raise

    def _clean_response(self, response: str) -> str:
        """Clean response text while preserving key information"""
        if not response:
            return response

        # Keep only the most common phrases to remove
        phrases_to_remove = [
            "Based on the context,",
            "According to the documents,",
            "From the information available,",
            "Based on the provided information,",
            "I apologize,"
        ]
    
        cleaned_response = response
        for phrase in phrases_to_remove:
            cleaned_response = cleaned_response.replace(phrase, "").strip()
    
        cleaned_response = " ".join(cleaned_response.split())

        if not cleaned_response:
            return response
    
        if cleaned_response[0].islower():
            cleaned_response = cleaned_response[0].upper() + cleaned_response[1:]
    
        return cleaned_response

    def _convert_metadata_to_strings(self, metadata: Dict) -> Dict:
        """Convert metadata values to strings"""
        try:
            return {
                key: str(value) if isinstance(value, (int, float)) else value
                for key, value in metadata.items()
            }
        except Exception as e:
            logger.error(f"Error converting metadata: {str(e)}")
            return metadata

    def _handle_contact_query(self, query: str) -> str:
        """Handle contact/introduction queries"""
        try:
            name_start = query.find('name: "') + 7
            name_end = query.find('"', name_start)
            name = query[name_start:name_end] if name_start > 6 and name_end != -1 else "there"

            is_returning = (
                "An old user with name:" in query and 
                "wants support again" in query
            )
            
            return f"Welcome back {name}, How can I help you?" if is_returning else f"Welcome {name}, How can I help you?"

        except Exception as e:
            logger.error(f"Error handling contact query: {str(e)}")
            return "Welcome, How can I help you?"