Spaces:
Runtime error
Runtime error
File size: 13,687 Bytes
9c00f5c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 |
#This code is adapted from https://github.com/THUDM/CogView2/blob/4e55cce981eb94b9c8c1f19ba9f632fd3ee42ba8/cogview2_text2image.py
from __future__ import annotations
import argparse
import functools
import logging
import pathlib
import sys
import time
from typing import Any
import gradio as gr
import numpy as np
import torch
from icetk import IceTokenizer
from SwissArmyTransformer import get_args
from SwissArmyTransformer.arguments import set_random_seed
from SwissArmyTransformer.generation.autoregressive_sampling import \
filling_sequence
from SwissArmyTransformer.model import CachedAutoregressiveModel
app_dir = pathlib.Path(__file__).parent
submodule_dir = app_dir / 'CogView2'
sys.path.insert(0, submodule_dir.as_posix())
from coglm_strategy import CoglmStrategy
from sr_pipeline import SRGroup
formatter = logging.Formatter(
'[%(asctime)s] %(name)s %(levelname)s: %(message)s',
datefmt='%Y-%m-%d %H:%M:%S')
stream_handler = logging.StreamHandler(stream=sys.stdout)
stream_handler.setLevel(logging.DEBUG)
stream_handler.setFormatter(formatter)
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
logger.propagate = False
logger.addHandler(stream_handler)
ICETK_MODEL_DIR = app_dir / 'icetk_models'
def get_masks_and_position_ids_coglm(
seq: torch.Tensor, context_length: int
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
tokens = seq.unsqueeze(0)
attention_mask = torch.ones((1, len(seq), len(seq)), device=tokens.device)
attention_mask.tril_()
attention_mask[..., :context_length] = 1
attention_mask.unsqueeze_(1)
position_ids = torch.zeros(len(seq),
device=tokens.device,
dtype=torch.long)
torch.arange(0, context_length, out=position_ids[:context_length])
torch.arange(512,
512 + len(seq) - context_length,
out=position_ids[context_length:])
position_ids = position_ids.unsqueeze(0)
return tokens, attention_mask, position_ids
class InferenceModel(CachedAutoregressiveModel):
def final_forward(self, logits, **kwargs):
logits_parallel = logits
logits_parallel = torch.nn.functional.linear(
logits_parallel.float(),
self.transformer.word_embeddings.weight[:20000].float())
return logits_parallel
def get_recipe(name: str) -> dict[str, Any]:
r = {
'attn_plus': 1.4,
'temp_all_gen': 1.15,
'topk_gen': 16,
'temp_cluster_gen': 1.,
'temp_all_dsr': 1.5,
'topk_dsr': 100,
'temp_cluster_dsr': 0.89,
'temp_all_itersr': 1.3,
'topk_itersr': 16,
'query_template': '{}<start_of_image>',
}
if name == 'none':
pass
elif name == 'mainbody':
r['query_template'] = '{} 高清摄影 隔绝<start_of_image>'
elif name == 'photo':
r['query_template'] = '{} 高清摄影<start_of_image>'
elif name == 'flat':
r['query_template'] = '{} 平面风格<start_of_image>'
# r['attn_plus'] = 1.8
# r['temp_cluster_gen'] = 0.75
r['temp_all_gen'] = 1.1
r['topk_dsr'] = 5
r['temp_cluster_dsr'] = 0.4
r['temp_all_itersr'] = 1
r['topk_itersr'] = 5
elif name == 'comics':
r['query_template'] = '{} 漫画 隔绝<start_of_image>'
r['topk_dsr'] = 5
r['temp_cluster_dsr'] = 0.4
r['temp_all_gen'] = 1.1
r['temp_all_itersr'] = 1
r['topk_itersr'] = 5
elif name == 'oil':
r['query_template'] = '{} 油画风格<start_of_image>'
pass
elif name == 'sketch':
r['query_template'] = '{} 素描风格<start_of_image>'
r['temp_all_gen'] = 1.1
elif name == 'isometric':
r['query_template'] = '{} 等距矢量图<start_of_image>'
r['temp_all_gen'] = 1.1
elif name == 'chinese':
r['query_template'] = '{} 水墨国画<start_of_image>'
r['temp_all_gen'] = 1.12
elif name == 'watercolor':
r['query_template'] = '{} 水彩画风格<start_of_image>'
return r
def get_default_args() -> argparse.Namespace:
arg_list = ['--mode', 'inference', '--fp16']
args = get_args(arg_list)
known = argparse.Namespace(img_size=160,
only_first_stage=False,
inverse_prompt=False,
style='mainbody')
args = argparse.Namespace(**vars(args), **vars(known),
**get_recipe(known.style))
return args
class Model:
def __init__(self, only_first_stage: bool = False):
self.args = get_default_args()
self.args.only_first_stage = only_first_stage
self.tokenizer = self.load_tokenizer()
self.model, self.args = self.load_model()
self.strategy = self.load_strategy()
self.srg = self.load_srg()
self.query_template = self.args.query_template
self.style = self.args.style
self.device = torch.device(self.args.device)
self.fp16 = self.args.fp16
self.max_batch_size = self.args.max_inference_batch_size
self.only_first_stage = self.args.only_first_stage
def load_tokenizer(self) -> IceTokenizer:
logger.info('--- load_tokenizer ---')
start = time.perf_counter()
tokenizer = IceTokenizer(ICETK_MODEL_DIR.as_posix())
tokenizer.add_special_tokens(
['<start_of_image>', '<start_of_english>', '<start_of_chinese>'])
elapsed = time.perf_counter() - start
logger.info(f'Elapsed: {elapsed}')
logger.info('--- done ---')
return tokenizer
def load_model(self) -> tuple[InferenceModel, argparse.Namespace]:
logger.info('--- load_model ---')
start = time.perf_counter()
model, args = InferenceModel.from_pretrained(self.args, 'coglm')
elapsed = time.perf_counter() - start
logger.info(f'Elapsed: {elapsed}')
logger.info('--- done ---')
return model, args
def load_strategy(self) -> CoglmStrategy:
logger.info('--- load_strategy ---')
start = time.perf_counter()
invalid_slices = [slice(self.tokenizer.num_image_tokens, None)]
strategy = CoglmStrategy(invalid_slices,
temperature=self.args.temp_all_gen,
top_k=self.args.topk_gen,
top_k_cluster=self.args.temp_cluster_gen)
elapsed = time.perf_counter() - start
logger.info(f'Elapsed: {elapsed}')
logger.info('--- done ---')
return strategy
def load_srg(self) -> SRGroup:
logger.info('--- load_srg ---')
start = time.perf_counter()
srg = None if self.args.only_first_stage else SRGroup(self.args)
elapsed = time.perf_counter() - start
logger.info(f'Elapsed: {elapsed}')
logger.info('--- done ---')
return srg
def update_style(self, style: str) -> None:
if style == self.style:
return
logger.info('--- update_style ---')
start = time.perf_counter()
self.args = argparse.Namespace(**(vars(self.args) | get_recipe(style)))
self.query_template = self.args.query_template
logger.info(f'{self.query_template=}')
self.strategy.temperature = self.args.temp_all_gen
if self.srg is not None:
self.srg.dsr.strategy.temperature = self.args.temp_all_dsr
self.srg.dsr.strategy.topk = self.args.topk_dsr
self.srg.dsr.strategy.temperature2 = self.args.temp_cluster_dsr
self.srg.itersr.strategy.temperature = self.args.temp_all_itersr
self.srg.itersr.strategy.topk = self.args.topk_itersr
elapsed = time.perf_counter() - start
logger.info(f'Elapsed: {elapsed}')
logger.info('--- done ---')
def run(self, text: str, style: str, seed: int, only_first_stage: bool,
num: int) -> list[np.ndarray] | None:
set_random_seed(seed)
seq, txt_len = self.preprocess_text(text)
if seq is None:
return None
self.update_style(style)
self.only_first_stage = only_first_stage
tokens = self.generate_tokens(seq, txt_len, num)
res = self.generate_images(seq, txt_len, tokens)
return res
@torch.inference_mode()
def preprocess_text(
self, text: str) -> tuple[torch.Tensor, int] | tuple[None, None]:
logger.info('--- preprocess_text ---')
start = time.perf_counter()
text = self.query_template.format(text)
logger.info(f'{text=}')
seq = self.tokenizer.encode(text)
logger.info(f'{len(seq)=}')
if len(seq) > 110:
logger.info('The input text is too long.')
return None, None
txt_len = len(seq) - 1
seq = torch.tensor(seq + [-1] * 400, device=self.device)
elapsed = time.perf_counter() - start
logger.info(f'Elapsed: {elapsed}')
logger.info('--- done ---')
return seq, txt_len
@torch.inference_mode()
def generate_tokens(self,
seq: torch.Tensor,
txt_len: int,
num: int = 8) -> torch.Tensor:
logger.info('--- generate_tokens ---')
start = time.perf_counter()
# calibrate text length
log_attention_weights = torch.zeros(
len(seq),
len(seq),
device=self.device,
dtype=torch.half if self.fp16 else torch.float32)
log_attention_weights[:, :txt_len] = self.args.attn_plus
get_func = functools.partial(get_masks_and_position_ids_coglm,
context_length=txt_len)
output_list = []
remaining = num
for _ in range((num + self.max_batch_size - 1) // self.max_batch_size):
self.strategy.start_pos = txt_len + 1
coarse_samples = filling_sequence(
self.model,
seq.clone(),
batch_size=min(remaining, self.max_batch_size),
strategy=self.strategy,
log_attention_weights=log_attention_weights,
get_masks_and_position_ids=get_func)[0]
output_list.append(coarse_samples)
remaining -= self.max_batch_size
output_tokens = torch.cat(output_list, dim=0)
logger.info(f'{output_tokens.shape=}')
elapsed = time.perf_counter() - start
logger.info(f'Elapsed: {elapsed}')
logger.info('--- done ---')
return output_tokens
@staticmethod
def postprocess(tensor: torch.Tensor) -> np.ndarray:
return tensor.cpu().mul(255).add_(0.5).clamp_(0, 255).permute(
1, 2, 0).to(torch.uint8).numpy()
@torch.inference_mode()
def generate_images(self, seq: torch.Tensor, txt_len: int,
tokens: torch.Tensor) -> list[np.ndarray]:
logger.info('--- generate_images ---')
start = time.perf_counter()
logger.info(f'{self.only_first_stage=}')
res = []
if self.only_first_stage:
for i in range(len(tokens)):
seq = tokens[i]
decoded_img = self.tokenizer.decode(image_ids=seq[-400:])
decoded_img = torch.nn.functional.interpolate(decoded_img,
size=(480, 480))
decoded_img = self.postprocess(decoded_img[0])
res.append(decoded_img) # only the last image (target)
else: # sr
iter_tokens = self.srg.sr_base(tokens[:, -400:], seq[:txt_len])
for seq in iter_tokens:
decoded_img = self.tokenizer.decode(image_ids=seq[-3600:])
decoded_img = torch.nn.functional.interpolate(decoded_img,
size=(480, 480))
decoded_img = self.postprocess(decoded_img[0])
res.append(decoded_img) # only the last image (target)
elapsed = time.perf_counter() - start
logger.info(f'Elapsed: {elapsed}')
logger.info('--- done ---')
return res
class AppModel(Model):
def __init__(self, only_first_stage: bool):
super().__init__(only_first_stage)
self.translator = gr.Interface.load(
'spaces/chinhon/translation_eng2ch')
def make_grid(self, images: list[np.ndarray] | None) -> np.ndarray | None:
if images is None or len(images) == 0:
return None
ncols = 1
while True:
if ncols**2 >= len(images):
break
ncols += 1
nrows = (len(images) + ncols - 1) // ncols
h, w = images[0].shape[:2]
grid = np.zeros((h * nrows, w * ncols, 3), dtype=np.uint8)
for i in range(nrows):
for j in range(ncols):
index = ncols * i + j
if index >= len(images):
break
grid[h * i:h * (i + 1), w * j:w * (j + 1)] = images[index]
return grid
def run_with_translation(
self, text: str, translate: bool, style: str, seed: int,
only_first_stage: bool, num: int
) -> tuple[str | None, np.ndarray | None, list[np.ndarray] | None]:
if translate:
text = translated_text = self.translator(text)
else:
translated_text = None
results = self.run(text, style, seed, only_first_stage, num)
grid_image = self.make_grid(results)
return translated_text, grid_image, results
|