# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0

import argparse
import json
import os
import re
import subprocess
import tarfile
import time
import warnings
from dataclasses import dataclass, field
from typing import List, Optional

warnings.filterwarnings("ignore")  # ignore warning

import pyrallis
import torch
from torchvision.utils import save_image
from tqdm import tqdm

from diffusion import DPMS, FlowEuler, SASolverSampler
from diffusion.data.datasets.utils import (
    ASPECT_RATIO_512_TEST,
    ASPECT_RATIO_1024_TEST,
    ASPECT_RATIO_2048_TEST,
    ASPECT_RATIO_4096_TEST,
)
from diffusion.model.builder import build_model, get_tokenizer_and_text_encoder, get_vae, vae_decode
from diffusion.model.utils import get_weight_dtype, prepare_prompt_ar
from diffusion.utils.config import SanaConfig, model_init_config
from diffusion.utils.logger import get_root_logger

# from diffusion.utils.misc import read_config
from tools.download import find_model


def set_env(seed=0, latent_size=256):
    torch.manual_seed(seed)
    torch.set_grad_enabled(False)
    for _ in range(30):
        torch.randn(1, 4, latent_size, latent_size)


def get_dict_chunks(data, bs):
    keys = []
    for k in data:
        keys.append(k)
        if len(keys) == bs:
            yield keys
            keys = []
    if keys:
        yield keys


def create_tar(data_path):
    tar_path = f"{data_path}.tar"
    with tarfile.open(tar_path, "w") as tar:
        tar.add(data_path, arcname=os.path.basename(data_path))
    print(f"Created tar file: {tar_path}")
    return tar_path


def delete_directory(exp_name):
    if os.path.exists(exp_name):
        subprocess.run(["rm", "-r", exp_name], check=True)
        print(f"Deleted directory: {exp_name}")


@torch.inference_mode()
def visualize(items, bs, sample_steps, cfg_scale, pag_scale=1.0):
    if isinstance(items, dict):
        get_chunks = get_dict_chunks
    else:
        from diffusion.data.datasets.utils import get_chunks

    generator = torch.Generator(device=device).manual_seed(args.seed)
    tqdm_desc = f"{save_root.split('/')[-1]} Using GPU: {args.gpu_id}: {args.start_index}-{args.end_index}"
    assert bs == 1
    for chunk in tqdm(list(get_chunks(items, bs)), desc=tqdm_desc, unit="batch", position=args.gpu_id, leave=True):
        # data prepare
        prompts, hw, ar = (
            [],
            torch.tensor([[args.image_size, args.image_size]], dtype=torch.float, device=device).repeat(bs, 1),
            torch.tensor([[1.0]], device=device).repeat(bs, 1),
        )
        prompt = data_dict[chunk[0]]["prompt"]
        prompts = [
            prepare_prompt_ar(prompt, base_ratios, device=device, show=False)[0].strip()
        ] * args.sample_per_prompt
        latent_size_h, latent_size_w = latent_size, latent_size

        # check exists
        save_file_name = f"{chunk[0]}_0.jpg"  # 004971-0071_7.png
        save_path = os.path.join(save_root, save_file_name)
        if os.path.exists(save_path):
            # make sure the noise is totally same
            torch.randn(
                len(prompts), config.vae.vae_latent_dim, latent_size, latent_size, device=device, generator=generator
            )
            continue

        # prepare text feature
        caption_token = tokenizer(
            prompts, max_length=max_sequence_length, padding="max_length", truncation=True, return_tensors="pt"
        ).to(device)
        caption_embs = text_encoder(caption_token.input_ids, caption_token.attention_mask)[0][:, None]
        emb_masks, null_y = caption_token.attention_mask, null_caption_embs.repeat(len(prompts), 1, 1)[:, None]

        # start sampling
        with torch.no_grad():
            n = len(prompts)
            z = torch.randn(
                n,
                config.vae.vae_latent_dim,
                latent_size,
                latent_size,
                device=device,
                generator=generator,
            )
            model_kwargs = dict(data_info={"img_hw": hw, "aspect_ratio": ar}, mask=emb_masks)

            if args.sampling_algo == "dpm-solver":
                dpm_solver = DPMS(
                    model.forward_with_dpmsolver,
                    condition=caption_embs,
                    uncondition=null_y,
                    cfg_scale=cfg_scale,
                    model_kwargs=model_kwargs,
                )
                samples = dpm_solver.sample(
                    z,
                    steps=sample_steps,
                    order=2,
                    skip_type="time_uniform",
                    method="multistep",
                )
            elif args.sampling_algo == "sa-solver":
                sa_solver = SASolverSampler(model.forward_with_dpmsolver, device=device)
                samples = sa_solver.sample(
                    S=25,
                    batch_size=n,
                    shape=(config.vae.vae_latent_dim, latent_size_h, latent_size_w),
                    eta=1,
                    conditioning=caption_embs,
                    unconditional_conditioning=null_y,
                    unconditional_guidance_scale=cfg_scale,
                    model_kwargs=model_kwargs,
                )[0]
            elif args.sampling_algo == "flow_euler":
                flow_solver = FlowEuler(
                    model, condition=caption_embs, uncondition=null_y, cfg_scale=cfg_scale, model_kwargs=model_kwargs
                )
                samples = flow_solver.sample(
                    z,
                    steps=sample_steps,
                )
            elif args.sampling_algo == "flow_dpm-solver":
                dpm_solver = DPMS(
                    model.forward_with_dpmsolver,
                    condition=caption_embs,
                    uncondition=null_y,
                    guidance_type=guidance_type,
                    cfg_scale=cfg_scale,
                    pag_scale=pag_scale,
                    pag_applied_layers=pag_applied_layers,
                    model_type="flow",
                    model_kwargs=model_kwargs,
                    schedule="FLOW",
                    interval_guidance=args.interval_guidance,
                )
                samples = dpm_solver.sample(
                    z,
                    steps=sample_steps,
                    order=2,
                    skip_type="time_uniform_flow",
                    method="multistep",
                    flow_shift=flow_shift,
                )
            else:
                raise ValueError(f"{args.sampling_algo} is not defined")

        samples = samples.to(vae_dtype)
        samples = vae_decode(config.vae.vae_type, vae, samples)
        torch.cuda.empty_cache()

        os.umask(0o000)
        for i in range(bs):
            for j, sample in enumerate(samples):
                save_file_name = f"{chunk[i]}_{j}.jpg"
                save_path = os.path.join(save_root, save_file_name)
                # logger.info(f"Saving path: {save_path}")
                save_image(sample, save_path, nrow=1, normalize=True, value_range=(-1, 1))


def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--config", type=str, help="config")

    return parser.parse_known_args()[0]


@dataclass
class SanaInference(SanaConfig):
    config: str = ""
    model_path: Optional[str] = field(default=None, metadata={"help": "Path to the model file (optional)"})
    txt_file: str = "asset/samples/samples.txt"
    json_file: Optional[str] = None
    sample_nums: int = 100_000
    bs: int = 1
    sample_per_prompt: int = 10
    cfg_scale: float = 4.5
    pag_scale: float = 1.0
    sampling_algo: str = field(
        default="flow_dpm-solver", metadata={"choices": ["dpm-solver", "sa-solver", "flow_euler", "flow_dpm-solver"]}
    )
    seed: int = 0
    dataset: str = "custom"
    step: int = -1
    add_label: str = ""
    tar_and_del: bool = field(default=False, metadata={"help": "if tar and del the saved dir"})
    exist_time_prefix: str = ""
    gpu_id: int = 0
    custom_image_size: Optional[int] = None
    start_index: int = 0
    end_index: int = 30_000
    interval_guidance: List[float] = field(
        default_factory=lambda: [0, 1], metadata={"help": "A list value, like [0, 1.] for use cfg"}
    )
    ablation_selections: Optional[List[float]] = field(
        default=None, metadata={"help": "A list value, like [0, 1.] for ablation"}
    )
    ablation_key: Optional[str] = field(default=None, metadata={"choices": ["step", "cfg_scale", "pag_scale"]})
    if_save_dirname: bool = field(
        default=False,
        metadata={"help": "if save img save dir name at wor_dir/metrics/tmp_time.time().txt for metric testing"},
    )


if __name__ == "__main__":

    args = get_args()
    config = args = pyrallis.parse(config_class=SanaInference, config_path=args.config)

    args.image_size = config.model.image_size
    if args.custom_image_size:
        args.image_size = args.custom_image_size
        print(f"custom_image_size: {args.image_size}")

    set_env(args.seed, args.image_size // config.vae.vae_downsample_rate)
    device = "cuda" if torch.cuda.is_available() else "cpu"
    logger = get_root_logger()

    # only support fixed latent size currently
    latent_size = args.image_size // config.vae.vae_downsample_rate
    max_sequence_length = config.text_encoder.model_max_length
    pe_interpolation = config.model.pe_interpolation
    micro_condition = config.model.micro_condition
    flow_shift = config.scheduler.flow_shift
    pag_applied_layers = config.model.pag_applied_layers
    guidance_type = "classifier-free_PAG"
    assert (
        isinstance(args.interval_guidance, list)
        and len(args.interval_guidance) == 2
        and args.interval_guidance[0] <= args.interval_guidance[1]
    )
    args.interval_guidance = [max(0, args.interval_guidance[0]), min(1, args.interval_guidance[1])]
    sample_steps_dict = {"dpm-solver": 20, "sa-solver": 25, "flow_dpm-solver": 20, "flow_euler": 28}
    sample_steps = args.step if args.step != -1 else sample_steps_dict[args.sampling_algo]
    weight_dtype = get_weight_dtype(config.model.mixed_precision)
    logger.info(f"Inference with {weight_dtype}, default guidance_type: {guidance_type}, flow_shift: {flow_shift}")

    vae_dtype = get_weight_dtype(config.vae.weight_dtype)
    vae = get_vae(config.vae.vae_type, config.vae.vae_pretrained, device).to(vae_dtype)
    tokenizer, text_encoder = get_tokenizer_and_text_encoder(name=config.text_encoder.text_encoder_name, device=device)

    null_caption_token = tokenizer(
        "", max_length=max_sequence_length, padding="max_length", truncation=True, return_tensors="pt"
    ).to(device)
    null_caption_embs = text_encoder(null_caption_token.input_ids, null_caption_token.attention_mask)[0]

    # model setting
    model_kwargs = model_init_config(config, latent_size=latent_size)
    model = build_model(
        config.model.model, use_fp32_attention=getattr(config.model, "fp32_attention", False), **model_kwargs
    ).to(device)
    logger.info(
        f"{model.__class__.__name__}:{config.model.model}, Model Parameters: {sum(p.numel() for p in model.parameters()):,}"
    )
    args.model_path = args.model_path or args.position_model_path
    logger.info("Generating sample from ckpt: %s" % args.model_path)
    state_dict = find_model(args.model_path)
    if "pos_embed" in state_dict["state_dict"]:
        del state_dict["state_dict"]["pos_embed"]

    missing, unexpected = model.load_state_dict(state_dict["state_dict"], strict=False)
    logger.warning(f"Missing keys: {missing}")
    logger.warning(f"Unexpected keys: {unexpected}")
    model.eval().to(weight_dtype)
    base_ratios = eval(f"ASPECT_RATIO_{args.image_size}_TEST")
    args.sampling_algo = (
        args.sampling_algo
        if ("flow" not in args.model_path or args.sampling_algo == "flow_dpm-solver")
        else "flow_euler"
    )

    work_dir = (
        f"/{os.path.join(*args.model_path.split('/')[:-2])}"
        if args.model_path.startswith("/")
        else os.path.join(*args.model_path.split("/")[:-2])
    )

    dict_prompt = args.json_file is not None
    if dict_prompt:
        data_dict = json.load(open(args.json_file))
        items = list(data_dict.keys())
    else:
        with open(args.txt_file) as f:
            items = [item.strip() for item in f.readlines()]
    logger.info(f"Eval first {min(args.sample_nums, len(items))}/{len(items)} samples")
    items = items[: max(0, args.sample_nums)]
    items = items[max(0, args.start_index) : min(len(items), args.end_index)]

    match = re.search(r".*epoch_(\d+).*step_(\d+).*", args.model_path)
    epoch_name, step_name = match.groups() if match else ("unknown", "unknown")

    img_save_dir = os.path.join(str(work_dir), "vis")
    os.umask(0o000)
    os.makedirs(img_save_dir, exist_ok=True)
    logger.info(f"Sampler {args.sampling_algo}")

    def create_save_root(args, dataset, epoch_name, step_name, sample_steps, guidance_type):
        save_root = os.path.join(
            img_save_dir,
            # f"{datetime.now().date() if args.exist_time_prefix == '' else args.exist_time_prefix}_"
            f"{dataset}_epoch{epoch_name}_step{step_name}_scale{args.cfg_scale}"
            f"_step{sample_steps}_size{args.image_size}_bs{args.bs}_samp{args.sampling_algo}"
            f"_seed{args.seed}_{str(weight_dtype).split('.')[-1]}",
        )

        if args.pag_scale != 1.0:
            save_root = save_root.replace(f"scale{args.cfg_scale}", f"scale{args.cfg_scale}_pagscale{args.pag_scale}")
        if flow_shift != 1.0:
            save_root += f"_flowshift{flow_shift}"
        if guidance_type != "classifier-free":
            save_root += f"_{guidance_type}"
        if args.interval_guidance[0] != 0 and args.interval_guidance[1] != 1:
            save_root += f"_intervalguidance{args.interval_guidance[0]}{args.interval_guidance[1]}"

        save_root += f"_imgnums{args.sample_nums}" + args.add_label
        return save_root

    def guidance_type_select(default_guidance_type, pag_scale, attn_type):
        guidance_type = default_guidance_type
        if not (pag_scale > 1.0 and attn_type == "linear"):
            logger.info("Setting back to classifier-free")
            guidance_type = "classifier-free"
        return guidance_type

    dataset = "MJHQ-30K" if args.json_file and "MJHQ-30K" in args.json_file else args.dataset
    if args.ablation_selections and args.ablation_key:
        for ablation_factor in args.ablation_selections:
            setattr(args, args.ablation_key, eval(ablation_factor))
            print(f"Setting {args.ablation_key}={eval(ablation_factor)}")
            sample_steps = args.step if args.step != -1 else sample_steps_dict[args.sampling_algo]
            guidance_type = guidance_type_select(guidance_type, args.pag_scale, config.model.attn_type)

            save_root = create_save_root(args, dataset, epoch_name, step_name, sample_steps, guidance_type)
            os.makedirs(save_root, exist_ok=True)
            if args.if_save_dirname and args.gpu_id == 0:
                # save at work_dir/metrics/tmp_xxx.txt for metrics testing
                with open(f"{work_dir}/metrics/tmp_{dataset}_{time.time()}.txt", "w") as f:
                    print(f"save tmp file at {work_dir}/metrics/tmp_{dataset}_{time.time()}.txt")
                    f.write(os.path.basename(save_root))
            logger.info(f"Inference with {weight_dtype}, guidance_type: {guidance_type}, flow_shift: {flow_shift}")

            visualize(items, args.bs, sample_steps, args.cfg_scale, args.pag_scale)
    else:
        guidance_type = guidance_type_select(guidance_type, args.pag_scale, config.model.attn_type)
        logger.info(f"Inference with {weight_dtype}, guidance_type: {guidance_type}, flow_shift: {flow_shift}")

        save_root = create_save_root(args, dataset, epoch_name, step_name, sample_steps, guidance_type)
        os.makedirs(save_root, exist_ok=True)
        if args.if_save_dirname and args.gpu_id == 0:
            os.makedirs(f"{work_dir}/metrics", exist_ok=True)
            # save at work_dir/metrics/tmp_xxx.txt for metrics testing
            with open(f"{work_dir}/metrics/tmp_{dataset}_{time.time()}.txt", "w") as f:
                print(f"save tmp file at {work_dir}/metrics/tmp_{dataset}_{time.time()}.txt")
                f.write(os.path.basename(save_root))

        visualize(items, args.bs, sample_steps, args.cfg_scale, args.pag_scale)

        if args.tar_and_del:
            create_tar(save_root)
            delete_directory(save_root)