Spaces:
Runtime error
Runtime error
""" | |
Tiny AutoEncoder for Stable Diffusion | |
(DNN for encoding / decoding SD's latent space) | |
https://github.com/madebyollin/taesd | |
""" | |
import os | |
import torch | |
import torch.nn as nn | |
from modules import devices, paths_internal, shared | |
sd_vae_taesd_models = {} | |
def conv(n_in, n_out, **kwargs): | |
return nn.Conv2d(n_in, n_out, 3, padding=1, **kwargs) | |
class Clamp(nn.Module): | |
def forward(x): | |
return torch.tanh(x / 3) * 3 | |
class Block(nn.Module): | |
def __init__(self, n_in, n_out): | |
super().__init__() | |
self.conv = nn.Sequential(conv(n_in, n_out), nn.ReLU(), conv(n_out, n_out), nn.ReLU(), conv(n_out, n_out)) | |
self.skip = nn.Conv2d(n_in, n_out, 1, bias=False) if n_in != n_out else nn.Identity() | |
self.fuse = nn.ReLU() | |
def forward(self, x): | |
return self.fuse(self.conv(x) + self.skip(x)) | |
def decoder(latent_channels=4): | |
return nn.Sequential( | |
Clamp(), conv(latent_channels, 64), nn.ReLU(), | |
Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False), | |
Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False), | |
Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False), | |
Block(64, 64), conv(64, 3), | |
) | |
def encoder(latent_channels=4): | |
return nn.Sequential( | |
conv(3, 64), Block(64, 64), | |
conv(64, 64, stride=2, bias=False), Block(64, 64), Block(64, 64), Block(64, 64), | |
conv(64, 64, stride=2, bias=False), Block(64, 64), Block(64, 64), Block(64, 64), | |
conv(64, 64, stride=2, bias=False), Block(64, 64), Block(64, 64), Block(64, 64), | |
conv(64, latent_channels), | |
) | |
class TAESDDecoder(nn.Module): | |
latent_magnitude = 3 | |
latent_shift = 0.5 | |
def __init__(self, decoder_path="taesd_decoder.pth", latent_channels=None): | |
"""Initialize pretrained TAESD on the given device from the given checkpoints.""" | |
super().__init__() | |
if latent_channels is None: | |
latent_channels = 16 if "taesd3" in str(decoder_path) else 4 | |
self.decoder = decoder(latent_channels) | |
self.decoder.load_state_dict( | |
torch.load(decoder_path, map_location='cpu' if devices.device.type != 'cuda' else None)) | |
class TAESDEncoder(nn.Module): | |
latent_magnitude = 3 | |
latent_shift = 0.5 | |
def __init__(self, encoder_path="taesd_encoder.pth", latent_channels=None): | |
"""Initialize pretrained TAESD on the given device from the given checkpoints.""" | |
super().__init__() | |
if latent_channels is None: | |
latent_channels = 16 if "taesd3" in str(encoder_path) else 4 | |
self.encoder = encoder(latent_channels) | |
self.encoder.load_state_dict( | |
torch.load(encoder_path, map_location='cpu' if devices.device.type != 'cuda' else None)) | |
def download_model(model_path, model_url): | |
if not os.path.exists(model_path): | |
os.makedirs(os.path.dirname(model_path), exist_ok=True) | |
print(f'Downloading TAESD model to: {model_path}') | |
torch.hub.download_url_to_file(model_url, model_path) | |
def decoder_model(): | |
if not shared.sd_model.is_webui_legacy_model(): | |
return None | |
if shared.sd_model.is_sd3: | |
model_name = "taesd3_decoder.pth" | |
elif shared.sd_model.is_sdxl: | |
model_name = "taesdxl_decoder.pth" | |
else: | |
model_name = "taesd_decoder.pth" | |
loaded_model = sd_vae_taesd_models.get(model_name) | |
if loaded_model is None: | |
model_path = os.path.join(paths_internal.models_path, "VAE-taesd", model_name) | |
download_model(model_path, 'https://github.com/madebyollin/taesd/raw/main/' + model_name) | |
if os.path.exists(model_path): | |
loaded_model = TAESDDecoder(model_path) | |
loaded_model.eval() | |
loaded_model.to(devices.device, devices.dtype) | |
sd_vae_taesd_models[model_name] = loaded_model | |
else: | |
raise FileNotFoundError('TAESD model not found') | |
return loaded_model.decoder | |
def encoder_model(): | |
if shared.sd_model.is_sd3: | |
model_name = "taesd3_encoder.pth" | |
elif shared.sd_model.is_sdxl: | |
model_name = "taesdxl_encoder.pth" | |
else: | |
model_name = "taesd_encoder.pth" | |
loaded_model = sd_vae_taesd_models.get(model_name) | |
if loaded_model is None: | |
model_path = os.path.join(paths_internal.models_path, "VAE-taesd", model_name) | |
download_model(model_path, 'https://github.com/madebyollin/taesd/raw/main/' + model_name) | |
if os.path.exists(model_path): | |
loaded_model = TAESDEncoder(model_path) | |
loaded_model.eval() | |
loaded_model.to(devices.device, devices.dtype) | |
sd_vae_taesd_models[model_name] = loaded_model | |
else: | |
raise FileNotFoundError('TAESD model not found') | |
return loaded_model.encoder | |