Spaces:
Runtime error
Runtime error
import torch | |
from modules import prompt_parser, sd_samplers_common | |
from modules.shared import opts, state | |
import modules.shared as shared | |
from modules.script_callbacks import CFGDenoiserParams, cfg_denoiser_callback | |
from modules.script_callbacks import CFGDenoisedParams, cfg_denoised_callback | |
from modules.script_callbacks import AfterCFGCallbackParams, cfg_after_cfg_callback | |
from backend.sampling.sampling_function import sampling_function | |
def catenate_conds(conds): | |
if not isinstance(conds[0], dict): | |
return torch.cat(conds) | |
return {key: torch.cat([x[key] for x in conds]) for key in conds[0].keys()} | |
def subscript_cond(cond, a, b): | |
if not isinstance(cond, dict): | |
return cond[a:b] | |
return {key: vec[a:b] for key, vec in cond.items()} | |
def pad_cond(tensor, repeats, empty): | |
if not isinstance(tensor, dict): | |
return torch.cat([tensor, empty.repeat((tensor.shape[0], repeats, 1))], axis=1) | |
tensor['crossattn'] = pad_cond(tensor['crossattn'], repeats, empty) | |
return tensor | |
class CFGDenoiser(torch.nn.Module): | |
""" | |
Classifier free guidance denoiser. A wrapper for stable diffusion model (specifically for unet) | |
that can take a noisy picture and produce a noise-free picture using two guidances (prompts) | |
instead of one. Originally, the second prompt is just an empty string, but we use non-empty | |
negative prompt. | |
""" | |
def __init__(self, sampler): | |
super().__init__() | |
self.model_wrap = None | |
self.mask = None | |
self.nmask = None | |
self.init_latent = None | |
self.steps = None | |
"""number of steps as specified by user in UI""" | |
self.total_steps = None | |
"""expected number of calls to denoiser calculated from self.steps and specifics of the selected sampler""" | |
self.step = 0 | |
self.image_cfg_scale = None | |
self.padded_cond_uncond = False | |
self.padded_cond_uncond_v0 = False | |
self.sampler = sampler | |
self.model_wrap = None | |
self.p = None | |
self.need_last_noise_uncond = False | |
self.last_noise_uncond = None | |
# Backward Compatibility | |
self.mask_before_denoising = False | |
self.classic_ddim_eps_estimation = False | |
def inner_model(self): | |
raise NotImplementedError() | |
def combine_denoised(self, x_out, conds_list, uncond, cond_scale, timestep, x_in, cond): | |
denoised_uncond = x_out[-uncond.shape[0]:] | |
denoised = torch.clone(denoised_uncond) | |
for i, conds in enumerate(conds_list): | |
for cond_index, weight in conds: | |
denoised[i] += (x_out[cond_index] - denoised_uncond[i]) * (weight * cond_scale) | |
return denoised | |
def combine_denoised_for_edit_model(self, x_out, cond_scale): | |
out_cond, out_img_cond, out_uncond = x_out.chunk(3) | |
denoised = out_uncond + cond_scale * (out_cond - out_img_cond) + self.image_cfg_scale * (out_img_cond - out_uncond) | |
return denoised | |
def get_pred_x0(self, x_in, x_out, sigma): | |
return x_out | |
def update_inner_model(self): | |
self.model_wrap = None | |
c, uc = self.p.get_conds() | |
self.sampler.sampler_extra_args['cond'] = c | |
self.sampler.sampler_extra_args['uncond'] = uc | |
def pad_cond_uncond(self, cond, uncond): | |
empty = shared.sd_model.cond_stage_model_empty_prompt | |
num_repeats = (cond.shape[1] - uncond.shape[1]) // empty.shape[1] | |
if num_repeats < 0: | |
cond = pad_cond(cond, -num_repeats, empty) | |
self.padded_cond_uncond = True | |
elif num_repeats > 0: | |
uncond = pad_cond(uncond, num_repeats, empty) | |
self.padded_cond_uncond = True | |
return cond, uncond | |
def pad_cond_uncond_v0(self, cond, uncond): | |
""" | |
Pads the 'uncond' tensor to match the shape of the 'cond' tensor. | |
If 'uncond' is a dictionary, it is assumed that the 'crossattn' key holds the tensor to be padded. | |
If 'uncond' is a tensor, it is padded directly. | |
If the number of columns in 'uncond' is less than the number of columns in 'cond', the last column of 'uncond' | |
is repeated to match the number of columns in 'cond'. | |
If the number of columns in 'uncond' is greater than the number of columns in 'cond', 'uncond' is truncated | |
to match the number of columns in 'cond'. | |
Args: | |
cond (torch.Tensor or DictWithShape): The condition tensor to match the shape of 'uncond'. | |
uncond (torch.Tensor or DictWithShape): The tensor to be padded, or a dictionary containing the tensor to be padded. | |
Returns: | |
tuple: A tuple containing the 'cond' tensor and the padded 'uncond' tensor. | |
Note: | |
This is the padding that was always used in DDIM before version 1.6.0 | |
""" | |
is_dict_cond = isinstance(uncond, dict) | |
uncond_vec = uncond['crossattn'] if is_dict_cond else uncond | |
if uncond_vec.shape[1] < cond.shape[1]: | |
last_vector = uncond_vec[:, -1:] | |
last_vector_repeated = last_vector.repeat([1, cond.shape[1] - uncond_vec.shape[1], 1]) | |
uncond_vec = torch.hstack([uncond_vec, last_vector_repeated]) | |
self.padded_cond_uncond_v0 = True | |
elif uncond_vec.shape[1] > cond.shape[1]: | |
uncond_vec = uncond_vec[:, :cond.shape[1]] | |
self.padded_cond_uncond_v0 = True | |
if is_dict_cond: | |
uncond['crossattn'] = uncond_vec | |
else: | |
uncond = uncond_vec | |
return cond, uncond | |
def forward(self, x, sigma, uncond, cond, cond_scale, s_min_uncond, image_cond): | |
if state.interrupted or state.skipped: | |
raise sd_samplers_common.InterruptedException | |
original_x_device = x.device | |
original_x_dtype = x.dtype | |
if self.classic_ddim_eps_estimation: | |
acd = self.inner_model.inner_model.alphas_cumprod | |
fake_sigmas = ((1 - acd) / acd) ** 0.5 | |
real_sigma = fake_sigmas[sigma.round().long().clip(0, int(fake_sigmas.shape[0]))] | |
real_sigma_data = 1.0 | |
x = x * (((real_sigma ** 2.0 + real_sigma_data ** 2.0) ** 0.5)[:, None, None, None]) | |
sigma = real_sigma | |
if sd_samplers_common.apply_refiner(self, x): | |
cond = self.sampler.sampler_extra_args['cond'] | |
uncond = self.sampler.sampler_extra_args['uncond'] | |
cond_composition, cond = prompt_parser.reconstruct_multicond_batch(cond, self.step) | |
uncond = prompt_parser.reconstruct_cond_batch(uncond, self.step) if uncond is not None else None | |
if self.mask is not None: | |
noisy_initial_latent = self.init_latent + sigma[:, None, None, None] * torch.randn_like(self.init_latent).to(self.init_latent) | |
x = x * self.nmask + noisy_initial_latent * self.mask | |
denoiser_params = CFGDenoiserParams(x, image_cond, sigma, state.sampling_step, state.sampling_steps, cond, uncond, self) | |
cfg_denoiser_callback(denoiser_params) | |
denoised, cond_pred, uncond_pred = sampling_function(self, denoiser_params=denoiser_params, cond_scale=cond_scale, cond_composition=cond_composition) | |
if self.need_last_noise_uncond: | |
self.last_noise_uncond = (x - uncond_pred) / sigma[:, None, None, None] | |
if self.mask is not None: | |
blended_latent = denoised * self.nmask + self.init_latent * self.mask | |
if self.p.scripts is not None: | |
from modules import scripts | |
mba = scripts.MaskBlendArgs(denoised, self.nmask, self.init_latent, self.mask, blended_latent, denoiser=self, sigma=sigma) | |
self.p.scripts.on_mask_blend(self.p, mba) | |
blended_latent = mba.blended_latent | |
denoised = blended_latent | |
preview = self.sampler.last_latent = denoised | |
sd_samplers_common.store_latent(preview) | |
after_cfg_callback_params = AfterCFGCallbackParams(denoised, state.sampling_step, state.sampling_steps) | |
cfg_after_cfg_callback(after_cfg_callback_params) | |
denoised = after_cfg_callback_params.x | |
self.step += 1 | |
if self.classic_ddim_eps_estimation: | |
eps = (x - denoised) / sigma[:, None, None, None] | |
return eps | |
return denoised.to(device=original_x_device, dtype=original_x_dtype) | |