webui / modules /sd_hijack_xlmr.py
SunjinSunjin's picture
Upload folder using huggingface_hub
2e82449 verified
# import torch
#
# from modules import sd_hijack_clip, devices
#
#
# class FrozenXLMREmbedderWithCustomWords(sd_hijack_clip.FrozenCLIPEmbedderWithCustomWords):
# def __init__(self, wrapped, hijack):
# super().__init__(wrapped, hijack)
#
# self.id_start = wrapped.config.bos_token_id
# self.id_end = wrapped.config.eos_token_id
# self.id_pad = wrapped.config.pad_token_id
#
# self.comma_token = self.tokenizer.get_vocab().get(',', None) # alt diffusion doesn't have </w> bits for comma
#
# def encode_with_transformers(self, tokens):
# # there's no CLIP Skip here because all hidden layers have size of 1024 and the last one uses a
# # trained layer to transform those 1024 into 768 for unet; so you can't choose which transformer
# # layer to work with - you have to use the last
#
# attention_mask = (tokens != self.id_pad).to(device=tokens.device, dtype=torch.int64)
# features = self.wrapped(input_ids=tokens, attention_mask=attention_mask)
# z = features['projection_state']
#
# return z
#
# def encode_embedding_init_text(self, init_text, nvpt):
# embedding_layer = self.wrapped.roberta.embeddings
# ids = self.wrapped.tokenizer(init_text, max_length=nvpt, return_tensors="pt", add_special_tokens=False)["input_ids"]
# embedded = embedding_layer.token_embedding.wrapped(ids.to(devices.device)).squeeze(0)
#
# return embedded