Spaces:
Runtime error
Runtime error
# import open_clip.tokenizer | |
# import torch | |
# | |
# from modules import sd_hijack_clip, devices | |
# from modules.shared import opts | |
# | |
# tokenizer = open_clip.tokenizer._tokenizer | |
# | |
# | |
# class FrozenOpenCLIPEmbedderWithCustomWords(sd_hijack_clip.FrozenCLIPEmbedderWithCustomWordsBase): | |
# def __init__(self, wrapped, hijack): | |
# super().__init__(wrapped, hijack) | |
# | |
# self.comma_token = [v for k, v in tokenizer.encoder.items() if k == ',</w>'][0] | |
# self.id_start = tokenizer.encoder["<start_of_text>"] | |
# self.id_end = tokenizer.encoder["<end_of_text>"] | |
# self.id_pad = 0 | |
# | |
# def tokenize(self, texts): | |
# assert not opts.use_old_emphasis_implementation, 'Old emphasis implementation not supported for Open Clip' | |
# | |
# tokenized = [tokenizer.encode(text) for text in texts] | |
# | |
# return tokenized | |
# | |
# def encode_with_transformers(self, tokens): | |
# # set self.wrapped.layer_idx here according to opts.CLIP_stop_at_last_layers | |
# z = self.wrapped.encode_with_transformer(tokens) | |
# | |
# return z | |
# | |
# def encode_embedding_init_text(self, init_text, nvpt): | |
# ids = tokenizer.encode(init_text) | |
# ids = torch.asarray([ids], device=devices.device, dtype=torch.int) | |
# embedded = self.wrapped.model.token_embedding.wrapped(ids).squeeze(0) | |
# | |
# return embedded | |
# | |
# | |
# class FrozenOpenCLIPEmbedder2WithCustomWords(sd_hijack_clip.FrozenCLIPEmbedderWithCustomWordsBase): | |
# def __init__(self, wrapped, hijack): | |
# super().__init__(wrapped, hijack) | |
# | |
# self.comma_token = [v for k, v in tokenizer.encoder.items() if k == ',</w>'][0] | |
# self.id_start = tokenizer.encoder["<start_of_text>"] | |
# self.id_end = tokenizer.encoder["<end_of_text>"] | |
# self.id_pad = 0 | |
# | |
# def tokenize(self, texts): | |
# assert not opts.use_old_emphasis_implementation, 'Old emphasis implementation not supported for Open Clip' | |
# | |
# tokenized = [tokenizer.encode(text) for text in texts] | |
# | |
# return tokenized | |
# | |
# def encode_with_transformers(self, tokens): | |
# d = self.wrapped.encode_with_transformer(tokens) | |
# z = d[self.wrapped.layer] | |
# | |
# pooled = d.get("pooled") | |
# if pooled is not None: | |
# z.pooled = pooled | |
# | |
# return z | |
# | |
# def encode_embedding_init_text(self, init_text, nvpt): | |
# ids = tokenizer.encode(init_text) | |
# ids = torch.asarray([ids], device=devices.device, dtype=torch.int) | |
# embedded = self.wrapped.model.token_embedding.wrapped(ids.to(self.wrapped.model.token_embedding.wrapped.weight.device)).squeeze(0) | |
# | |
# return embedded | |