Spaces:
Runtime error
Runtime error
"""RNG imitiating torch cuda randn on CPU. You are welcome. | |
Usage: | |
``` | |
g = Generator(seed=0) | |
print(g.randn(shape=(3, 4))) | |
``` | |
Expected output: | |
``` | |
[[-0.92466259 -0.42534415 -2.6438457 0.14518388] | |
[-0.12086647 -0.57972564 -0.62285122 -0.32838709] | |
[-1.07454231 -0.36314407 -1.67105067 2.26550497]] | |
``` | |
""" | |
import numpy as np | |
philox_m = [0xD2511F53, 0xCD9E8D57] | |
philox_w = [0x9E3779B9, 0xBB67AE85] | |
two_pow32_inv = np.array([2.3283064e-10], dtype=np.float32) | |
two_pow32_inv_2pi = np.array([2.3283064e-10 * 6.2831855], dtype=np.float32) | |
def uint32(x): | |
"""Converts (N,) np.uint64 array into (2, N) np.unit32 array.""" | |
return x.view(np.uint32).reshape(-1, 2).transpose(1, 0) | |
def philox4_round(counter, key): | |
"""A single round of the Philox 4x32 random number generator.""" | |
v1 = uint32(counter[0].astype(np.uint64) * philox_m[0]) | |
v2 = uint32(counter[2].astype(np.uint64) * philox_m[1]) | |
counter[0] = v2[1] ^ counter[1] ^ key[0] | |
counter[1] = v2[0] | |
counter[2] = v1[1] ^ counter[3] ^ key[1] | |
counter[3] = v1[0] | |
def philox4_32(counter, key, rounds=10): | |
"""Generates 32-bit random numbers using the Philox 4x32 random number generator. | |
Parameters: | |
counter (numpy.ndarray): A 4xN array of 32-bit integers representing the counter values (offset into generation). | |
key (numpy.ndarray): A 2xN array of 32-bit integers representing the key values (seed). | |
rounds (int): The number of rounds to perform. | |
Returns: | |
numpy.ndarray: A 4xN array of 32-bit integers containing the generated random numbers. | |
""" | |
for _ in range(rounds - 1): | |
philox4_round(counter, key) | |
key[0] = key[0] + philox_w[0] | |
key[1] = key[1] + philox_w[1] | |
philox4_round(counter, key) | |
return counter | |
def box_muller(x, y): | |
"""Returns just the first out of two numbers generated by BoxβMuller transform algorithm.""" | |
u = x * two_pow32_inv + two_pow32_inv / 2 | |
v = y * two_pow32_inv_2pi + two_pow32_inv_2pi / 2 | |
s = np.sqrt(-2.0 * np.log(u)) | |
r1 = s * np.sin(v) | |
return r1.astype(np.float32) | |
class Generator: | |
"""RNG that produces same outputs as torch.randn(..., device='cuda') on CPU""" | |
def __init__(self, seed): | |
self.seed = seed | |
self.offset = 0 | |
def randn(self, shape): | |
"""Generate a sequence of n standard normal random variables using the Philox 4x32 random number generator and the Box-Muller transform.""" | |
n = 1 | |
for x in shape: | |
n *= x | |
counter = np.zeros((4, n), dtype=np.uint32) | |
counter[0] = self.offset | |
counter[2] = np.arange(n, dtype=np.uint32) # up to 2^32 numbers can be generated - if you want more you'd need to spill into counter[3] | |
self.offset += 1 | |
key = np.empty(n, dtype=np.uint64) | |
key.fill(self.seed) | |
key = uint32(key) | |
g = philox4_32(counter, key) | |
return box_muller(g[0], g[1]).reshape(shape) # discard g[2] and g[3] | |