File size: 4,932 Bytes
2e82449
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
"""
Tiny AutoEncoder for Stable Diffusion
(DNN for encoding / decoding SD's latent space)

https://github.com/madebyollin/taesd
"""
import os
import torch
import torch.nn as nn

from modules import devices, paths_internal, shared

sd_vae_taesd_models = {}


def conv(n_in, n_out, **kwargs):
    return nn.Conv2d(n_in, n_out, 3, padding=1, **kwargs)


class Clamp(nn.Module):
    @staticmethod
    def forward(x):
        return torch.tanh(x / 3) * 3


class Block(nn.Module):
    def __init__(self, n_in, n_out):
        super().__init__()
        self.conv = nn.Sequential(conv(n_in, n_out), nn.ReLU(), conv(n_out, n_out), nn.ReLU(), conv(n_out, n_out))
        self.skip = nn.Conv2d(n_in, n_out, 1, bias=False) if n_in != n_out else nn.Identity()
        self.fuse = nn.ReLU()

    def forward(self, x):
        return self.fuse(self.conv(x) + self.skip(x))


def decoder(latent_channels=4):
    return nn.Sequential(
        Clamp(), conv(latent_channels, 64), nn.ReLU(),
        Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False),
        Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False),
        Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False),
        Block(64, 64), conv(64, 3),
    )


def encoder(latent_channels=4):
    return nn.Sequential(
        conv(3, 64), Block(64, 64),
        conv(64, 64, stride=2, bias=False), Block(64, 64), Block(64, 64), Block(64, 64),
        conv(64, 64, stride=2, bias=False), Block(64, 64), Block(64, 64), Block(64, 64),
        conv(64, 64, stride=2, bias=False), Block(64, 64), Block(64, 64), Block(64, 64),
        conv(64, latent_channels),
    )


class TAESDDecoder(nn.Module):
    latent_magnitude = 3
    latent_shift = 0.5

    def __init__(self, decoder_path="taesd_decoder.pth", latent_channels=None):
        """Initialize pretrained TAESD on the given device from the given checkpoints."""
        super().__init__()

        if latent_channels is None:
            latent_channels = 16 if "taesd3" in str(decoder_path) else 4

        self.decoder = decoder(latent_channels)
        self.decoder.load_state_dict(
            torch.load(decoder_path, map_location='cpu' if devices.device.type != 'cuda' else None))


class TAESDEncoder(nn.Module):
    latent_magnitude = 3
    latent_shift = 0.5

    def __init__(self, encoder_path="taesd_encoder.pth", latent_channels=None):
        """Initialize pretrained TAESD on the given device from the given checkpoints."""
        super().__init__()

        if latent_channels is None:
            latent_channels = 16 if "taesd3" in str(encoder_path) else 4

        self.encoder = encoder(latent_channels)
        self.encoder.load_state_dict(
            torch.load(encoder_path, map_location='cpu' if devices.device.type != 'cuda' else None))


def download_model(model_path, model_url):
    if not os.path.exists(model_path):
        os.makedirs(os.path.dirname(model_path), exist_ok=True)

        print(f'Downloading TAESD model to: {model_path}')
        torch.hub.download_url_to_file(model_url, model_path)


def decoder_model():
    if not shared.sd_model.is_webui_legacy_model():
        return None

    if shared.sd_model.is_sd3:
        model_name = "taesd3_decoder.pth"
    elif shared.sd_model.is_sdxl:
        model_name = "taesdxl_decoder.pth"
    else:
        model_name = "taesd_decoder.pth"

    loaded_model = sd_vae_taesd_models.get(model_name)

    if loaded_model is None:
        model_path = os.path.join(paths_internal.models_path, "VAE-taesd", model_name)
        download_model(model_path, 'https://github.com/madebyollin/taesd/raw/main/' + model_name)

        if os.path.exists(model_path):
            loaded_model = TAESDDecoder(model_path)
            loaded_model.eval()
            loaded_model.to(devices.device, devices.dtype)
            sd_vae_taesd_models[model_name] = loaded_model
        else:
            raise FileNotFoundError('TAESD model not found')

    return loaded_model.decoder


def encoder_model():
    if shared.sd_model.is_sd3:
        model_name = "taesd3_encoder.pth"
    elif shared.sd_model.is_sdxl:
        model_name = "taesdxl_encoder.pth"
    else:
        model_name = "taesd_encoder.pth"

    loaded_model = sd_vae_taesd_models.get(model_name)

    if loaded_model is None:
        model_path = os.path.join(paths_internal.models_path, "VAE-taesd", model_name)
        download_model(model_path, 'https://github.com/madebyollin/taesd/raw/main/' + model_name)

        if os.path.exists(model_path):
            loaded_model = TAESDEncoder(model_path)
            loaded_model.eval()
            loaded_model.to(devices.device, devices.dtype)
            sd_vae_taesd_models[model_name] = loaded_model
        else:
            raise FileNotFoundError('TAESD model not found')

    return loaded_model.encoder