Spaces:
Runtime error
Runtime error
File size: 5,850 Bytes
2e82449 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
# import os
#
# import torch
#
# from modules import shared, paths, sd_disable_initialization, devices
#
# sd_configs_path = shared.sd_configs_path
# # sd_repo_configs_path = os.path.join(paths.paths['Stable Diffusion'], "configs", "stable-diffusion")
# # sd_xl_repo_configs_path = os.path.join(paths.paths['Stable Diffusion XL'], "configs", "inference")
#
#
# config_default = shared.sd_default_config
# # config_sd2 = os.path.join(sd_repo_configs_path, "v2-inference.yaml")
# config_sd2v = os.path.join(sd_repo_configs_path, "v2-inference-v.yaml")
# config_sd2_inpainting = os.path.join(sd_repo_configs_path, "v2-inpainting-inference.yaml")
# config_sdxl = os.path.join(sd_xl_repo_configs_path, "sd_xl_base.yaml")
# config_sdxl_refiner = os.path.join(sd_xl_repo_configs_path, "sd_xl_refiner.yaml")
# config_sdxl_inpainting = os.path.join(sd_configs_path, "sd_xl_inpaint.yaml")
# config_depth_model = os.path.join(sd_repo_configs_path, "v2-midas-inference.yaml")
# config_unclip = os.path.join(sd_repo_configs_path, "v2-1-stable-unclip-l-inference.yaml")
# config_unopenclip = os.path.join(sd_repo_configs_path, "v2-1-stable-unclip-h-inference.yaml")
# config_inpainting = os.path.join(sd_configs_path, "v1-inpainting-inference.yaml")
# config_instruct_pix2pix = os.path.join(sd_configs_path, "instruct-pix2pix.yaml")
# config_alt_diffusion = os.path.join(sd_configs_path, "alt-diffusion-inference.yaml")
# config_alt_diffusion_m18 = os.path.join(sd_configs_path, "alt-diffusion-m18-inference.yaml")
# config_sd3 = os.path.join(sd_configs_path, "sd3-inference.yaml")
#
#
# def is_using_v_parameterization_for_sd2(state_dict):
# """
# Detects whether unet in state_dict is using v-parameterization. Returns True if it is. You're welcome.
# """
#
# import ldm.modules.diffusionmodules.openaimodel
#
# device = devices.device
#
# with sd_disable_initialization.DisableInitialization():
# unet = ldm.modules.diffusionmodules.openaimodel.UNetModel(
# use_checkpoint=False,
# use_fp16=False,
# image_size=32,
# in_channels=4,
# out_channels=4,
# model_channels=320,
# attention_resolutions=[4, 2, 1],
# num_res_blocks=2,
# channel_mult=[1, 2, 4, 4],
# num_head_channels=64,
# use_spatial_transformer=True,
# use_linear_in_transformer=True,
# transformer_depth=1,
# context_dim=1024,
# legacy=False
# )
# unet.eval()
#
# with torch.no_grad():
# unet_sd = {k.replace("model.diffusion_model.", ""): v for k, v in state_dict.items() if "model.diffusion_model." in k}
# unet.load_state_dict(unet_sd, strict=True)
# unet.to(device=device, dtype=devices.dtype_unet)
#
# test_cond = torch.ones((1, 2, 1024), device=device) * 0.5
# x_test = torch.ones((1, 4, 8, 8), device=device) * 0.5
#
# with devices.autocast():
# out = (unet(x_test, torch.asarray([999], device=device), context=test_cond) - x_test).mean().cpu().item()
#
# return out < -1
#
#
# def guess_model_config_from_state_dict(sd, filename):
# sd2_cond_proj_weight = sd.get('cond_stage_model.model.transformer.resblocks.0.attn.in_proj_weight', None)
# diffusion_model_input = sd.get('model.diffusion_model.input_blocks.0.0.weight', None)
# sd2_variations_weight = sd.get('embedder.model.ln_final.weight', None)
#
# if "model.diffusion_model.x_embedder.proj.weight" in sd:
# return config_sd3
#
# if sd.get('conditioner.embedders.1.model.ln_final.weight', None) is not None:
# if diffusion_model_input.shape[1] == 9:
# return config_sdxl_inpainting
# else:
# return config_sdxl
#
# if sd.get('conditioner.embedders.0.model.ln_final.weight', None) is not None:
# return config_sdxl_refiner
# elif sd.get('depth_model.model.pretrained.act_postprocess3.0.project.0.bias', None) is not None:
# return config_depth_model
# elif sd2_variations_weight is not None and sd2_variations_weight.shape[0] == 768:
# return config_unclip
# elif sd2_variations_weight is not None and sd2_variations_weight.shape[0] == 1024:
# return config_unopenclip
#
# if sd2_cond_proj_weight is not None and sd2_cond_proj_weight.shape[1] == 1024:
# if diffusion_model_input.shape[1] == 9:
# return config_sd2_inpainting
# # elif is_using_v_parameterization_for_sd2(sd):
# # return config_sd2v
# else:
# return config_sd2v
#
# if diffusion_model_input is not None:
# if diffusion_model_input.shape[1] == 9:
# return config_inpainting
# if diffusion_model_input.shape[1] == 8:
# return config_instruct_pix2pix
#
# if sd.get('cond_stage_model.roberta.embeddings.word_embeddings.weight', None) is not None:
# if sd.get('cond_stage_model.transformation.weight').size()[0] == 1024:
# return config_alt_diffusion_m18
# return config_alt_diffusion
#
# return config_default
#
#
# def find_checkpoint_config(state_dict, info):
# if info is None:
# return guess_model_config_from_state_dict(state_dict, "")
#
# config = find_checkpoint_config_near_filename(info)
# if config is not None:
# return config
#
# return guess_model_config_from_state_dict(state_dict, info.filename)
#
#
# def find_checkpoint_config_near_filename(info):
# if info is None:
# return None
#
# config = f"{os.path.splitext(info.filename)[0]}.yaml"
# if os.path.exists(config):
# return config
#
# return None
#
|