Spaces:
Runtime error
Runtime error
File size: 25,735 Bytes
2e82449 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 |
# from __future__ import annotations
# import math
# import psutil
# import platform
#
# import torch
# from torch import einsum
#
# from ldm.util import default
# from einops import rearrange
#
# from modules import shared, errors, devices, sub_quadratic_attention
# from modules.hypernetworks import hypernetwork
#
# import ldm.modules.attention
# import ldm.modules.diffusionmodules.model
#
# import sgm.modules.attention
# import sgm.modules.diffusionmodules.model
#
# diffusionmodules_model_AttnBlock_forward = ldm.modules.diffusionmodules.model.AttnBlock.forward
# sgm_diffusionmodules_model_AttnBlock_forward = sgm.modules.diffusionmodules.model.AttnBlock.forward
#
#
# class SdOptimization:
# name: str = None
# label: str | None = None
# cmd_opt: str | None = None
# priority: int = 0
#
# def title(self):
# if self.label is None:
# return self.name
#
# return f"{self.name} - {self.label}"
#
# def is_available(self):
# return True
#
# def apply(self):
# pass
#
# def undo(self):
# ldm.modules.attention.CrossAttention.forward = hypernetwork.attention_CrossAttention_forward
# ldm.modules.diffusionmodules.model.AttnBlock.forward = diffusionmodules_model_AttnBlock_forward
#
# sgm.modules.attention.CrossAttention.forward = hypernetwork.attention_CrossAttention_forward
# sgm.modules.diffusionmodules.model.AttnBlock.forward = sgm_diffusionmodules_model_AttnBlock_forward
#
#
# class SdOptimizationXformers(SdOptimization):
# name = "xformers"
# cmd_opt = "xformers"
# priority = 100
#
# def is_available(self):
# return shared.cmd_opts.force_enable_xformers or (shared.xformers_available and torch.cuda.is_available() and (6, 0) <= torch.cuda.get_device_capability(shared.device) <= (9, 0))
#
# def apply(self):
# ldm.modules.attention.CrossAttention.forward = xformers_attention_forward
# ldm.modules.diffusionmodules.model.AttnBlock.forward = xformers_attnblock_forward
# sgm.modules.attention.CrossAttention.forward = xformers_attention_forward
# sgm.modules.diffusionmodules.model.AttnBlock.forward = xformers_attnblock_forward
#
#
# class SdOptimizationSdpNoMem(SdOptimization):
# name = "sdp-no-mem"
# label = "scaled dot product without memory efficient attention"
# cmd_opt = "opt_sdp_no_mem_attention"
# priority = 80
#
# def is_available(self):
# return hasattr(torch.nn.functional, "scaled_dot_product_attention") and callable(torch.nn.functional.scaled_dot_product_attention)
#
# def apply(self):
# ldm.modules.attention.CrossAttention.forward = scaled_dot_product_no_mem_attention_forward
# ldm.modules.diffusionmodules.model.AttnBlock.forward = sdp_no_mem_attnblock_forward
# sgm.modules.attention.CrossAttention.forward = scaled_dot_product_no_mem_attention_forward
# sgm.modules.diffusionmodules.model.AttnBlock.forward = sdp_no_mem_attnblock_forward
#
#
# class SdOptimizationSdp(SdOptimizationSdpNoMem):
# name = "sdp"
# label = "scaled dot product"
# cmd_opt = "opt_sdp_attention"
# priority = 70
#
# def apply(self):
# ldm.modules.attention.CrossAttention.forward = scaled_dot_product_attention_forward
# ldm.modules.diffusionmodules.model.AttnBlock.forward = sdp_attnblock_forward
# sgm.modules.attention.CrossAttention.forward = scaled_dot_product_attention_forward
# sgm.modules.diffusionmodules.model.AttnBlock.forward = sdp_attnblock_forward
#
#
# class SdOptimizationSubQuad(SdOptimization):
# name = "sub-quadratic"
# cmd_opt = "opt_sub_quad_attention"
#
# @property
# def priority(self):
# return 1000 if shared.device.type == 'mps' else 10
#
# def apply(self):
# ldm.modules.attention.CrossAttention.forward = sub_quad_attention_forward
# ldm.modules.diffusionmodules.model.AttnBlock.forward = sub_quad_attnblock_forward
# sgm.modules.attention.CrossAttention.forward = sub_quad_attention_forward
# sgm.modules.diffusionmodules.model.AttnBlock.forward = sub_quad_attnblock_forward
#
#
# class SdOptimizationV1(SdOptimization):
# name = "V1"
# label = "original v1"
# cmd_opt = "opt_split_attention_v1"
# priority = 10
#
# def apply(self):
# ldm.modules.attention.CrossAttention.forward = split_cross_attention_forward_v1
# sgm.modules.attention.CrossAttention.forward = split_cross_attention_forward_v1
#
#
# class SdOptimizationInvokeAI(SdOptimization):
# name = "InvokeAI"
# cmd_opt = "opt_split_attention_invokeai"
#
# @property
# def priority(self):
# return 1000 if shared.device.type != 'mps' and not torch.cuda.is_available() else 10
#
# def apply(self):
# ldm.modules.attention.CrossAttention.forward = split_cross_attention_forward_invokeAI
# sgm.modules.attention.CrossAttention.forward = split_cross_attention_forward_invokeAI
#
#
# class SdOptimizationDoggettx(SdOptimization):
# name = "Doggettx"
# cmd_opt = "opt_split_attention"
# priority = 90
#
# def apply(self):
# ldm.modules.attention.CrossAttention.forward = split_cross_attention_forward
# ldm.modules.diffusionmodules.model.AttnBlock.forward = cross_attention_attnblock_forward
# sgm.modules.attention.CrossAttention.forward = split_cross_attention_forward
# sgm.modules.diffusionmodules.model.AttnBlock.forward = cross_attention_attnblock_forward
#
#
# def list_optimizers(res):
# res.extend([
# SdOptimizationXformers(),
# SdOptimizationSdpNoMem(),
# SdOptimizationSdp(),
# SdOptimizationSubQuad(),
# SdOptimizationV1(),
# SdOptimizationInvokeAI(),
# SdOptimizationDoggettx(),
# ])
#
#
# if shared.cmd_opts.xformers or shared.cmd_opts.force_enable_xformers:
# try:
# import xformers.ops
# shared.xformers_available = True
# except Exception:
# errors.report("Cannot import xformers", exc_info=True)
#
#
# def get_available_vram():
# if shared.device.type == 'cuda':
# stats = torch.cuda.memory_stats(shared.device)
# mem_active = stats['active_bytes.all.current']
# mem_reserved = stats['reserved_bytes.all.current']
# mem_free_cuda, _ = torch.cuda.mem_get_info(torch.cuda.current_device())
# mem_free_torch = mem_reserved - mem_active
# mem_free_total = mem_free_cuda + mem_free_torch
# return mem_free_total
# else:
# return psutil.virtual_memory().available
#
#
# # see https://github.com/basujindal/stable-diffusion/pull/117 for discussion
# def split_cross_attention_forward_v1(self, x, context=None, mask=None, **kwargs):
# h = self.heads
#
# q_in = self.to_q(x)
# context = default(context, x)
#
# context_k, context_v = hypernetwork.apply_hypernetworks(shared.loaded_hypernetworks, context)
# k_in = self.to_k(context_k)
# v_in = self.to_v(context_v)
# del context, context_k, context_v, x
#
# q, k, v = (rearrange(t, 'b n (h d) -> (b h) n d', h=h) for t in (q_in, k_in, v_in))
# del q_in, k_in, v_in
#
# dtype = q.dtype
# if shared.opts.upcast_attn:
# q, k, v = q.float(), k.float(), v.float()
#
# with devices.without_autocast(disable=not shared.opts.upcast_attn):
# r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
# for i in range(0, q.shape[0], 2):
# end = i + 2
# s1 = einsum('b i d, b j d -> b i j', q[i:end], k[i:end])
# s1 *= self.scale
#
# s2 = s1.softmax(dim=-1)
# del s1
#
# r1[i:end] = einsum('b i j, b j d -> b i d', s2, v[i:end])
# del s2
# del q, k, v
#
# r1 = r1.to(dtype)
#
# r2 = rearrange(r1, '(b h) n d -> b n (h d)', h=h)
# del r1
#
# return self.to_out(r2)
#
#
# # taken from https://github.com/Doggettx/stable-diffusion and modified
# def split_cross_attention_forward(self, x, context=None, mask=None, **kwargs):
# h = self.heads
#
# q_in = self.to_q(x)
# context = default(context, x)
#
# context_k, context_v = hypernetwork.apply_hypernetworks(shared.loaded_hypernetworks, context)
# k_in = self.to_k(context_k)
# v_in = self.to_v(context_v)
#
# dtype = q_in.dtype
# if shared.opts.upcast_attn:
# q_in, k_in, v_in = q_in.float(), k_in.float(), v_in if v_in.device.type == 'mps' else v_in.float()
#
# with devices.without_autocast(disable=not shared.opts.upcast_attn):
# k_in = k_in * self.scale
#
# del context, x
#
# q, k, v = (rearrange(t, 'b n (h d) -> (b h) n d', h=h) for t in (q_in, k_in, v_in))
# del q_in, k_in, v_in
#
# r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
#
# mem_free_total = get_available_vram()
#
# gb = 1024 ** 3
# tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size()
# modifier = 3 if q.element_size() == 2 else 2.5
# mem_required = tensor_size * modifier
# steps = 1
#
# if mem_required > mem_free_total:
# steps = 2 ** (math.ceil(math.log(mem_required / mem_free_total, 2)))
# # print(f"Expected tensor size:{tensor_size/gb:0.1f}GB, cuda free:{mem_free_cuda/gb:0.1f}GB "
# # f"torch free:{mem_free_torch/gb:0.1f} total:{mem_free_total/gb:0.1f} steps:{steps}")
#
# if steps > 64:
# max_res = math.floor(math.sqrt(math.sqrt(mem_free_total / 2.5)) / 8) * 64
# raise RuntimeError(f'Not enough memory, use lower resolution (max approx. {max_res}x{max_res}). '
# f'Need: {mem_required / 64 / gb:0.1f}GB free, Have:{mem_free_total / gb:0.1f}GB free')
#
# slice_size = q.shape[1] // steps
# for i in range(0, q.shape[1], slice_size):
# end = min(i + slice_size, q.shape[1])
# s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k)
#
# s2 = s1.softmax(dim=-1, dtype=q.dtype)
# del s1
#
# r1[:, i:end] = einsum('b i j, b j d -> b i d', s2, v)
# del s2
#
# del q, k, v
#
# r1 = r1.to(dtype)
#
# r2 = rearrange(r1, '(b h) n d -> b n (h d)', h=h)
# del r1
#
# return self.to_out(r2)
#
#
# # -- Taken from https://github.com/invoke-ai/InvokeAI and modified --
# mem_total_gb = psutil.virtual_memory().total // (1 << 30)
#
#
# def einsum_op_compvis(q, k, v):
# s = einsum('b i d, b j d -> b i j', q, k)
# s = s.softmax(dim=-1, dtype=s.dtype)
# return einsum('b i j, b j d -> b i d', s, v)
#
#
# def einsum_op_slice_0(q, k, v, slice_size):
# r = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
# for i in range(0, q.shape[0], slice_size):
# end = i + slice_size
# r[i:end] = einsum_op_compvis(q[i:end], k[i:end], v[i:end])
# return r
#
#
# def einsum_op_slice_1(q, k, v, slice_size):
# r = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
# for i in range(0, q.shape[1], slice_size):
# end = i + slice_size
# r[:, i:end] = einsum_op_compvis(q[:, i:end], k, v)
# return r
#
#
# def einsum_op_mps_v1(q, k, v):
# if q.shape[0] * q.shape[1] <= 2**16: # (512x512) max q.shape[1]: 4096
# return einsum_op_compvis(q, k, v)
# else:
# slice_size = math.floor(2**30 / (q.shape[0] * q.shape[1]))
# if slice_size % 4096 == 0:
# slice_size -= 1
# return einsum_op_slice_1(q, k, v, slice_size)
#
#
# def einsum_op_mps_v2(q, k, v):
# if mem_total_gb > 8 and q.shape[0] * q.shape[1] <= 2**16:
# return einsum_op_compvis(q, k, v)
# else:
# return einsum_op_slice_0(q, k, v, 1)
#
#
# def einsum_op_tensor_mem(q, k, v, max_tensor_mb):
# size_mb = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size() // (1 << 20)
# if size_mb <= max_tensor_mb:
# return einsum_op_compvis(q, k, v)
# div = 1 << int((size_mb - 1) / max_tensor_mb).bit_length()
# if div <= q.shape[0]:
# return einsum_op_slice_0(q, k, v, q.shape[0] // div)
# return einsum_op_slice_1(q, k, v, max(q.shape[1] // div, 1))
#
#
# def einsum_op_cuda(q, k, v):
# stats = torch.cuda.memory_stats(q.device)
# mem_active = stats['active_bytes.all.current']
# mem_reserved = stats['reserved_bytes.all.current']
# mem_free_cuda, _ = torch.cuda.mem_get_info(q.device)
# mem_free_torch = mem_reserved - mem_active
# mem_free_total = mem_free_cuda + mem_free_torch
# # Divide factor of safety as there's copying and fragmentation
# return einsum_op_tensor_mem(q, k, v, mem_free_total / 3.3 / (1 << 20))
#
#
# def einsum_op(q, k, v):
# if q.device.type == 'cuda':
# return einsum_op_cuda(q, k, v)
#
# if q.device.type == 'mps':
# if mem_total_gb >= 32 and q.shape[0] % 32 != 0 and q.shape[0] * q.shape[1] < 2**18:
# return einsum_op_mps_v1(q, k, v)
# return einsum_op_mps_v2(q, k, v)
#
# # Smaller slices are faster due to L2/L3/SLC caches.
# # Tested on i7 with 8MB L3 cache.
# return einsum_op_tensor_mem(q, k, v, 32)
#
#
# def split_cross_attention_forward_invokeAI(self, x, context=None, mask=None, **kwargs):
# h = self.heads
#
# q = self.to_q(x)
# context = default(context, x)
#
# context_k, context_v = hypernetwork.apply_hypernetworks(shared.loaded_hypernetworks, context)
# k = self.to_k(context_k)
# v = self.to_v(context_v)
# del context, context_k, context_v, x
#
# dtype = q.dtype
# if shared.opts.upcast_attn:
# q, k, v = q.float(), k.float(), v if v.device.type == 'mps' else v.float()
#
# with devices.without_autocast(disable=not shared.opts.upcast_attn):
# k = k * self.scale
#
# q, k, v = (rearrange(t, 'b n (h d) -> (b h) n d', h=h) for t in (q, k, v))
# r = einsum_op(q, k, v)
# r = r.to(dtype)
# return self.to_out(rearrange(r, '(b h) n d -> b n (h d)', h=h))
#
# # -- End of code from https://github.com/invoke-ai/InvokeAI --
#
#
# # Based on Birch-san's modified implementation of sub-quadratic attention from https://github.com/Birch-san/diffusers/pull/1
# # The sub_quad_attention_forward function is under the MIT License listed under Memory Efficient Attention in the Licenses section of the web UI interface
# def sub_quad_attention_forward(self, x, context=None, mask=None, **kwargs):
# assert mask is None, "attention-mask not currently implemented for SubQuadraticCrossAttnProcessor."
#
# h = self.heads
#
# q = self.to_q(x)
# context = default(context, x)
#
# context_k, context_v = hypernetwork.apply_hypernetworks(shared.loaded_hypernetworks, context)
# k = self.to_k(context_k)
# v = self.to_v(context_v)
# del context, context_k, context_v, x
#
# q = q.unflatten(-1, (h, -1)).transpose(1,2).flatten(end_dim=1)
# k = k.unflatten(-1, (h, -1)).transpose(1,2).flatten(end_dim=1)
# v = v.unflatten(-1, (h, -1)).transpose(1,2).flatten(end_dim=1)
#
# if q.device.type == 'mps':
# q, k, v = q.contiguous(), k.contiguous(), v.contiguous()
#
# dtype = q.dtype
# if shared.opts.upcast_attn:
# q, k = q.float(), k.float()
#
# x = sub_quad_attention(q, k, v, q_chunk_size=shared.cmd_opts.sub_quad_q_chunk_size, kv_chunk_size=shared.cmd_opts.sub_quad_kv_chunk_size, chunk_threshold=shared.cmd_opts.sub_quad_chunk_threshold, use_checkpoint=self.training)
#
# x = x.to(dtype)
#
# x = x.unflatten(0, (-1, h)).transpose(1,2).flatten(start_dim=2)
#
# out_proj, dropout = self.to_out
# x = out_proj(x)
# x = dropout(x)
#
# return x
#
#
# def sub_quad_attention(q, k, v, q_chunk_size=1024, kv_chunk_size=None, kv_chunk_size_min=None, chunk_threshold=None, use_checkpoint=True):
# bytes_per_token = torch.finfo(q.dtype).bits//8
# batch_x_heads, q_tokens, _ = q.shape
# _, k_tokens, _ = k.shape
# qk_matmul_size_bytes = batch_x_heads * bytes_per_token * q_tokens * k_tokens
#
# if chunk_threshold is None:
# if q.device.type == 'mps':
# chunk_threshold_bytes = 268435456 * (2 if platform.processor() == 'i386' else bytes_per_token)
# else:
# chunk_threshold_bytes = int(get_available_vram() * 0.7)
# elif chunk_threshold == 0:
# chunk_threshold_bytes = None
# else:
# chunk_threshold_bytes = int(0.01 * chunk_threshold * get_available_vram())
#
# if kv_chunk_size_min is None and chunk_threshold_bytes is not None:
# kv_chunk_size_min = chunk_threshold_bytes // (batch_x_heads * bytes_per_token * (k.shape[2] + v.shape[2]))
# elif kv_chunk_size_min == 0:
# kv_chunk_size_min = None
#
# if chunk_threshold_bytes is not None and qk_matmul_size_bytes <= chunk_threshold_bytes:
# # the big matmul fits into our memory limit; do everything in 1 chunk,
# # i.e. send it down the unchunked fast-path
# kv_chunk_size = k_tokens
#
# with devices.without_autocast(disable=q.dtype == v.dtype):
# return sub_quadratic_attention.efficient_dot_product_attention(
# q,
# k,
# v,
# query_chunk_size=q_chunk_size,
# kv_chunk_size=kv_chunk_size,
# kv_chunk_size_min = kv_chunk_size_min,
# use_checkpoint=use_checkpoint,
# )
#
#
# def get_xformers_flash_attention_op(q, k, v):
# if not shared.cmd_opts.xformers_flash_attention:
# return None
#
# try:
# flash_attention_op = xformers.ops.MemoryEfficientAttentionFlashAttentionOp
# fw, bw = flash_attention_op
# if fw.supports(xformers.ops.fmha.Inputs(query=q, key=k, value=v, attn_bias=None)):
# return flash_attention_op
# except Exception as e:
# errors.display_once(e, "enabling flash attention")
#
# return None
#
#
# def xformers_attention_forward(self, x, context=None, mask=None, **kwargs):
# h = self.heads
# q_in = self.to_q(x)
# context = default(context, x)
#
# context_k, context_v = hypernetwork.apply_hypernetworks(shared.loaded_hypernetworks, context)
# k_in = self.to_k(context_k)
# v_in = self.to_v(context_v)
#
# q, k, v = (t.reshape(t.shape[0], t.shape[1], h, -1) for t in (q_in, k_in, v_in))
#
# del q_in, k_in, v_in
#
# dtype = q.dtype
# if shared.opts.upcast_attn:
# q, k, v = q.float(), k.float(), v.float()
#
# out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=get_xformers_flash_attention_op(q, k, v))
#
# out = out.to(dtype)
#
# b, n, h, d = out.shape
# out = out.reshape(b, n, h * d)
# return self.to_out(out)
#
#
# # Based on Diffusers usage of scaled dot product attention from https://github.com/huggingface/diffusers/blob/c7da8fd23359a22d0df2741688b5b4f33c26df21/src/diffusers/models/cross_attention.py
# # The scaled_dot_product_attention_forward function contains parts of code under Apache-2.0 license listed under Scaled Dot Product Attention in the Licenses section of the web UI interface
# def scaled_dot_product_attention_forward(self, x, context=None, mask=None, **kwargs):
# batch_size, sequence_length, inner_dim = x.shape
#
# if mask is not None:
# mask = self.prepare_attention_mask(mask, sequence_length, batch_size)
# mask = mask.view(batch_size, self.heads, -1, mask.shape[-1])
#
# h = self.heads
# q_in = self.to_q(x)
# context = default(context, x)
#
# context_k, context_v = hypernetwork.apply_hypernetworks(shared.loaded_hypernetworks, context)
# k_in = self.to_k(context_k)
# v_in = self.to_v(context_v)
#
# head_dim = inner_dim // h
# q = q_in.view(batch_size, -1, h, head_dim).transpose(1, 2)
# k = k_in.view(batch_size, -1, h, head_dim).transpose(1, 2)
# v = v_in.view(batch_size, -1, h, head_dim).transpose(1, 2)
#
# del q_in, k_in, v_in
#
# dtype = q.dtype
# if shared.opts.upcast_attn:
# q, k, v = q.float(), k.float(), v.float()
#
# # the output of sdp = (batch, num_heads, seq_len, head_dim)
# hidden_states = torch.nn.functional.scaled_dot_product_attention(
# q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False
# )
#
# hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, h * head_dim)
# hidden_states = hidden_states.to(dtype)
#
# # linear proj
# hidden_states = self.to_out[0](hidden_states)
# # dropout
# hidden_states = self.to_out[1](hidden_states)
# return hidden_states
#
#
# def scaled_dot_product_no_mem_attention_forward(self, x, context=None, mask=None, **kwargs):
# with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=True, enable_mem_efficient=False):
# return scaled_dot_product_attention_forward(self, x, context, mask)
#
#
# def cross_attention_attnblock_forward(self, x):
# h_ = x
# h_ = self.norm(h_)
# q1 = self.q(h_)
# k1 = self.k(h_)
# v = self.v(h_)
#
# # compute attention
# b, c, h, w = q1.shape
#
# q2 = q1.reshape(b, c, h*w)
# del q1
#
# q = q2.permute(0, 2, 1) # b,hw,c
# del q2
#
# k = k1.reshape(b, c, h*w) # b,c,hw
# del k1
#
# h_ = torch.zeros_like(k, device=q.device)
#
# mem_free_total = get_available_vram()
#
# tensor_size = q.shape[0] * q.shape[1] * k.shape[2] * q.element_size()
# mem_required = tensor_size * 2.5
# steps = 1
#
# if mem_required > mem_free_total:
# steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2)))
#
# slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
# for i in range(0, q.shape[1], slice_size):
# end = i + slice_size
#
# w1 = torch.bmm(q[:, i:end], k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
# w2 = w1 * (int(c)**(-0.5))
# del w1
# w3 = torch.nn.functional.softmax(w2, dim=2, dtype=q.dtype)
# del w2
#
# # attend to values
# v1 = v.reshape(b, c, h*w)
# w4 = w3.permute(0, 2, 1) # b,hw,hw (first hw of k, second of q)
# del w3
#
# h_[:, :, i:end] = torch.bmm(v1, w4) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
# del v1, w4
#
# h2 = h_.reshape(b, c, h, w)
# del h_
#
# h3 = self.proj_out(h2)
# del h2
#
# h3 += x
#
# return h3
#
#
# def xformers_attnblock_forward(self, x):
# try:
# h_ = x
# h_ = self.norm(h_)
# q = self.q(h_)
# k = self.k(h_)
# v = self.v(h_)
# b, c, h, w = q.shape
# q, k, v = (rearrange(t, 'b c h w -> b (h w) c') for t in (q, k, v))
# dtype = q.dtype
# if shared.opts.upcast_attn:
# q, k = q.float(), k.float()
# q = q.contiguous()
# k = k.contiguous()
# v = v.contiguous()
# out = xformers.ops.memory_efficient_attention(q, k, v, op=get_xformers_flash_attention_op(q, k, v))
# out = out.to(dtype)
# out = rearrange(out, 'b (h w) c -> b c h w', h=h)
# out = self.proj_out(out)
# return x + out
# except NotImplementedError:
# return cross_attention_attnblock_forward(self, x)
#
#
# def sdp_attnblock_forward(self, x):
# h_ = x
# h_ = self.norm(h_)
# q = self.q(h_)
# k = self.k(h_)
# v = self.v(h_)
# b, c, h, w = q.shape
# q, k, v = (rearrange(t, 'b c h w -> b (h w) c') for t in (q, k, v))
# dtype = q.dtype
# if shared.opts.upcast_attn:
# q, k, v = q.float(), k.float(), v.float()
# q = q.contiguous()
# k = k.contiguous()
# v = v.contiguous()
# out = torch.nn.functional.scaled_dot_product_attention(q, k, v, dropout_p=0.0, is_causal=False)
# out = out.to(dtype)
# out = rearrange(out, 'b (h w) c -> b c h w', h=h)
# out = self.proj_out(out)
# return x + out
#
#
# def sdp_no_mem_attnblock_forward(self, x):
# with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=True, enable_mem_efficient=False):
# return sdp_attnblock_forward(self, x)
#
#
# def sub_quad_attnblock_forward(self, x):
# h_ = x
# h_ = self.norm(h_)
# q = self.q(h_)
# k = self.k(h_)
# v = self.v(h_)
# b, c, h, w = q.shape
# q, k, v = (rearrange(t, 'b c h w -> b (h w) c') for t in (q, k, v))
# q = q.contiguous()
# k = k.contiguous()
# v = v.contiguous()
# out = sub_quad_attention(q, k, v, q_chunk_size=shared.cmd_opts.sub_quad_q_chunk_size, kv_chunk_size=shared.cmd_opts.sub_quad_kv_chunk_size, chunk_threshold=shared.cmd_opts.sub_quad_chunk_threshold, use_checkpoint=self.training)
# out = rearrange(out, 'b (h w) c -> b c h w', h=h)
# out = self.proj_out(out)
# return x + out
|