Streetmarkets commited on
Commit
a5a846d
·
verified ·
1 Parent(s): 0453f0d

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -310
app.py DELETED
@@ -1,310 +0,0 @@
1
- import gradio as gr
2
- import open_clip
3
- import torch
4
- import requests
5
- import numpy as np
6
- from PIL import Image
7
- from io import BytesIO
8
-
9
- # Sidebar content
10
- sidebar_markdown = """
11
- Note, this demo can classify 200 items. If you didn't find what you're looking for, reach out to us on our [Community](https://join.slack.com/t/marqo-community/shared_invite/zt-2iab0260n-QJrZLUSOJYUifVxf964Gdw) and request an item to be added.
12
-
13
- ## Documentation
14
- 📚 [Blog Post](https://www.marqo.ai/blog/search-model-for-fashion)
15
-
16
- 📝 [Use Case Blog Post](https://www.marqo.ai/blog/ecommerce-image-classification-with-marqo-fashionclip)
17
-
18
- ## Code
19
- 💻 [GitHub Repo](https://github.com/marqo-ai/marqo-FashionCLIP)
20
-
21
- 🤝 [Google Colab](https://colab.research.google.com/drive/1nq978xFJjJcnyrJ2aE5l82GHAXOvTmfd?usp=sharing)
22
-
23
- 🤗 [Hugging Face Collection](https://huggingface.co/collections/Marqo/marqo-fashionclip-and-marqo-fashionsiglip-66b43f2d09a06ad2368d4af6)
24
- """
25
-
26
- # List of fashion items and their IDs
27
- categories = [
28
- {"name": "Nettoyants visage", "id": 101},
29
- {"name": "Exfoliants visage", "id": 102},
30
- {"name": "Hydratants visage", "id": 103},
31
- {"name": "Masques visage", "id": 104},
32
- {"name": "Soins ciblés visage", "id": 105},
33
- {"name": "Protection solaire visage", "id": 106},
34
- {"name": "Nettoyants visage homme", "id": 107},
35
- {"name": "Crèmes hydratantes homme", "id": 108},
36
- {"name": "Soins après-rasage", "id": 109},
37
- {"name": "Hydratants corps", "id": 110},
38
- {"name": "Exfoliants corps", "id": 111},
39
- {"name": "Soins fermeté & minceur", "id": 112},
40
- {"name": "Auto-bronzants", "id": 113},
41
- {"name": "Soins des mains", "id": 114},
42
- {"name": "Soins des pieds", "id": 115},
43
- {"name": "Hydratants corps homme", "id": 116},
44
- {"name": "Déodorants corps homme", "id": 117},
45
- {"name": "Shampoings", "id": 118},
46
- {"name": "Après-shampoings", "id": 119},
47
- {"name": "Masques capillaires", "id": 120},
48
- {"name": "Huiles capillaires", "id": 121},
49
- {"name": "Coiffants", "id": 122},
50
- {"name": "Accessoires cheveux", "id": 123},
51
- {"name": "Soins cheveux homme", "id": 124},
52
- {"name": "Produits coiffants homme", "id": 125},
53
- {"name": "Fond de teint", "id": 126},
54
- {"name": "BB/CC crèmes", "id": 127},
55
- {"name": "Poudres", "id": 128},
56
- {"name": "Fards à paupières", "id": 129},
57
- {"name": "Mascaras", "id": 130},
58
- {"name": "Eyeliners", "id": 131},
59
- {"name": "Rouges à lèvres", "id": 132},
60
- {"name": "Gloss", "id": 133},
61
- {"name": "Crayons à sourcils", "id": 134},
62
- {"name": "Accessoires maquillage", "id": 135},
63
- {"name": "Correcteurs teint homme", "id": 136},
64
- {"name": "Poudres matifiantes homme", "id": 137},
65
- {"name": "Parfums", "id": 138},
66
- {"name": "Brumes corporelles", "id": 139},
67
- {"name": "Huiles essentielles", "id": 140},
68
- {"name": "Diffuseurs d'huiles", "id": 141},
69
- {"name": "Bougies parfumées", "id": 142},
70
- {"name": "Déodorants solides", "id": 143},
71
- {"name": "Déodorants sprays", "id": 144},
72
- {"name": "Savons solides", "id": 145},
73
- {"name": "Savons liquides", "id": 146},
74
- {"name": "Produits bain", "id": 147},
75
- {"name": "Hygiène intime", "id": 148},
76
- {"name": "Cups menstruelles", "id": 149},
77
- {"name": "Produits zéro déchet", "id": 150},
78
- {"name": "Brosses nettoyantes visage", "id": 151},
79
- {"name": "Pinces à épiler", "id": 152},
80
- {"name": "Trousse de voyage", "id": 153},
81
- {"name": "Huiles de CBD", "id": 154},
82
- {"name": "Cosmétiques au CBD", "id": 155},
83
- {"name": "Infusions au CBD", "id": 156},
84
- {"name": "Bonbons au CBD", "id": 157},
85
- {"name": "Accessoires CBD", "id": 158},
86
- {"name": "Robes femme", "id": 201},
87
- {"name": "Tops femme", "id": 202},
88
- {"name": "Chemisiers femme", "id": 203},
89
- {"name": "T-shirts femme", "id": 204},
90
- {"name": "Pulls femme", "id": 205},
91
- {"name": "Jeans femme", "id": 206},
92
- {"name": "Pantalons femme", "id": 207},
93
- {"name": "Jupes femme", "id": 208},
94
- {"name": "Shorts femme", "id": 209},
95
- {"name": "Vestes femme", "id": 210},
96
- {"name": "Manteaux femme", "id": 211},
97
- {"name": "Maillots de bain femme", "id": 212},
98
- {"name": "Lingerie femme", "id": 213},
99
- {"name": "Chaussures femme", "id": 214},
100
- {"name": "Sacs femme", "id": 215},
101
- {"name": "Bijoux femme", "id": 216},
102
- {"name": "Chemises homme", "id": 301},
103
- {"name": "T-shirts homme", "id": 302},
104
- {"name": "Polos homme", "id": 303},
105
- {"name": "Pulls homme", "id": 304},
106
- {"name": "Jeans homme", "id": 305},
107
- {"name": "Pantalons homme", "id": 306},
108
- {"name": "Shorts homme", "id": 307},
109
- {"name": "Vestes homme", "id": 308},
110
- {"name": "Manteaux homme", "id": 309},
111
- {"name": "Costumes homme", "id": 310},
112
- {"name": "Maillots de bain homme", "id": 311},
113
- {"name": "Sous-vêtements homme", "id": 312},
114
- {"name": "Chaussures homme", "id": 313},
115
- {"name": "Accessoires homme", "id": 314},
116
- {"name": "Montres homme", "id": 315},
117
- {"name": "Vêtements bébé (0-2 ans)", "id": 401},
118
- {"name": "T-shirts enfant", "id": 402},
119
- {"name": "Pulls enfant", "id": 403},
120
- {"name": "Pantalons enfant", "id": 404},
121
- {"name": "Robes enfant", "id": 405},
122
- {"name": "Jeans enfant", "id": 406},
123
- {"name": "Vestes enfant", "id": 407},
124
- {"name": "Pyjamas enfant", "id": 408},
125
- {"name": "Chaussures enfant", "id": 409},
126
- {"name": "Accessoires enfant", "id": 410},
127
- {"name": "Vêtements de sport enfant", "id": 411},
128
- {"name": "Maillots de bain enfant", "id": 412},
129
- {"name": "Sous-vêtements enfant", "id": 413},
130
- {"name": "Déguisements enfant", "id": 414},
131
- {"name": "Cartables et sacs enfant", "id": 415},
132
- # Chaussures Femme détaillées
133
- {"name": "Sneakers femme", "id": 217},
134
- {"name": "Boots femme", "id": 218},
135
- {"name": "Escarpins femme", "id": 219},
136
- {"name": "Sandales femme", "id": 220},
137
- {"name": "Ballerines femme", "id": 221},
138
- {"name": "Mocassins femme", "id": 222},
139
- {"name": "Bottines femme", "id": 223},
140
- {"name": "Espadrilles femme", "id": 224},
141
- {"name": "Mules femme", "id": 225},
142
- {"name": "Chaussures de sport femme", "id": 226},
143
- {"name": "Bottes hautes femme", "id": 227},
144
- {"name": "Chaussures compensées femme", "id": 228},
145
- # Chaussures Homme détaillées
146
- {"name": "Sneakers homme", "id": 316},
147
- {"name": "Boots homme", "id": 317},
148
- {"name": "Chaussures de ville homme", "id": 318},
149
- {"name": "Mocassins homme", "id": 319},
150
- {"name": "Sandales homme", "id": 320},
151
- {"name": "Chaussures bateau homme", "id": 321},
152
- {"name": "Bottines homme", "id": 322},
153
- {"name": "Chaussures de sport homme", "id": 323},
154
- {"name": "Espadrilles homme", "id": 324},
155
- {"name": "Derbies homme", "id": 325},
156
- {"name": "Richelieus homme", "id": 326},
157
- {"name": "Chaussures de randonnée homme", "id": 327},
158
- # Chaussures Enfant détaillées
159
- {"name": "Sneakers enfant", "id": 416},
160
- {"name": "Bottes enfant", "id": 417},
161
- {"name": "Sandales enfant", "id": 418},
162
- {"name": "Chaussures de sport enfant", "id": 419},
163
- {"name": "Chaussures premiers pas", "id": 420},
164
- {"name": "Chaussures à scratch enfant", "id": 421},
165
- {"name": "Chaussures d'école enfant", "id": 422},
166
- {"name": "Pantoufles enfant", "id": 423},
167
- {"name": "Chaussures de cérémonie enfant", "id": 424},
168
- {"name": "Bottes de pluie enfant", "id": 425}
169
- ];
170
-
171
-
172
- # Extract category names
173
- items = [category["name"] for category in categories]
174
-
175
- # Initialize the model and tokenizer
176
- model_name = 'hf-hub:Marqo/marqo-fashionSigLIP'
177
- model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms(model_name)
178
- tokenizer = open_clip.get_tokenizer(model_name)
179
-
180
- # Generate descriptions
181
- def generate_description(item):
182
- return f"A fashion item called {item}"
183
-
184
- items_desc = [generate_description(item) for item in items]
185
- text = tokenizer(items_desc)
186
-
187
- # Encode text features
188
- device = 'cuda' if torch.cuda.is_available() else 'cpu'
189
- model.to(device)
190
-
191
- torch.cuda.empty_cache() # Avant de charger le modèle
192
-
193
- with torch.no_grad(), torch.amp.autocast(device_type=device):
194
- text_features = model.encode_text(text.to(device))
195
- text_features /= text_features.norm(dim=-1, keepdim=True)
196
-
197
- # Prediction function
198
- def predict(image, url):
199
- if url:
200
- response = requests.get(url)
201
- image = Image.open(BytesIO(response.content))
202
-
203
- processed_image = preprocess_val(image).unsqueeze(0).to(device)
204
-
205
- with torch.no_grad(), torch.amp.autocast(device_type=device):
206
- image_features = model.encode_image(processed_image)
207
- image_features /= image_features.norm(dim=-1, keepdim=True)
208
-
209
- text_probs = (100 * image_features @ text_features.T).softmax(dim=-1)
210
-
211
- sorted_confidences = sorted(
212
- {items[i]: float(text_probs[0, i]) for i in range(len(items))}.items(),
213
- key=lambda x: x[1],
214
- reverse=True
215
- )
216
-
217
- # Include category IDs in the response
218
- top_10_categories = [
219
- {
220
- "category_name": category["name"],
221
- "id": category["id"],
222
- "confidence": confidence
223
- }
224
- for category_name, confidence in sorted_confidences[:10]
225
- for category in categories if category["name"] == category_name
226
- ]
227
-
228
- return image, top_10_categories
229
-
230
- # Ajout de la fonction de prédiction par lots
231
- def predict_batch(images, urls):
232
- # Combiner les images provenant des URLs et des téléchargements directs
233
- combined_images = []
234
- for image, url in zip(images, urls):
235
- if url:
236
- response = requests.get(url)
237
- image = Image.open(BytesIO(response.content))
238
- combined_images.append(preprocess_val(image).unsqueeze(0).to(device))
239
-
240
- # Empiler toutes les images traitées en un seul lot
241
- batch_images = torch.cat(combined_images, dim=0)
242
-
243
- with torch.no_grad(), torch.amp.autocast(device_type=device):
244
- image_features = model.encode_image(batch_images)
245
- image_features /= image_features.norm(dim=-1, keepdim=True)
246
-
247
- text_probs = (100 * image_features @ text_features.T).softmax(dim=-1)
248
-
249
- # Traiter chaque image dans le lot
250
- batch_results = []
251
- for i in range(len(images)):
252
- sorted_confidences = sorted(
253
- {items[j]: float(text_probs[i, j]) for j in range(len(items))}.items(),
254
- key=lambda x: x[1],
255
- reverse=True
256
- )
257
-
258
- # Inclure les IDs de catégorie dans la réponse
259
- top_10_categories = [
260
- {
261
- "category_name": category["name"],
262
- "id": category["id"],
263
- "confidence": confidence
264
- }
265
- for category_name, confidence in sorted_confidences[:10]
266
- for category in categories if category["name"] == category_name
267
- ]
268
- batch_results.append(top_10_categories)
269
-
270
- return batch_results
271
-
272
- # Clear function
273
- def clear_fields():
274
- # return None, "", None, ""
275
- return None, ""
276
- # Gradio interface
277
- title = "Fashion Item Classifier with Marqo-FashionSigLIP"
278
- description = "Upload an image or provide a URL of a fashion item to classify it using [Marqo-FashionSigLIP](https://huggingface.co/Marqo/marqo-fashionSigLIP)!"
279
-
280
- examples = [
281
- ["images/dress.jpg", "Dress"],
282
- ["images/sweatpants.jpg", "Sweatpants"],
283
- ["images/t-shirt.jpg", "T-Shirt"],
284
- ]
285
-
286
- with gr.Blocks() as demo:
287
- with gr.Row():
288
- with gr.Column(scale=1):
289
- gr.Markdown(f"# {title}")
290
- gr.Markdown(description)
291
- gr.Markdown(sidebar_markdown)
292
- with gr.Column(scale=2):
293
- input_image = gr.Image(type="pil", label="Upload Fashion Item Image", height=312)
294
- input_url = gr.Textbox(label="Or provide an image URL")
295
- # input_images = gr.Image(type="pil", label="Upload Fashion Item Images", height=312)
296
- # input_urls = gr.Textbox(label="Or provide image URLs (comma-separated)", lines=2)
297
- with gr.Row():
298
- predict_button = gr.Button("Classify")
299
- # predict_batch_button = gr.Button("Classify Batch")
300
- clear_button = gr.Button("Clear")
301
- gr.Markdown("Or click on one of the images below to classify it:")
302
- gr.Examples(examples=examples, inputs=input_image)
303
- output_label = gr.JSON(label="Top Categories")
304
- # output_batch_label = gr.JSON(label="Top Categories for Each Image")
305
- predict_button.click(predict, inputs=[input_image, input_url], outputs=[input_image, output_label])
306
- # predict_batch_button.click(predict_batch, inputs=[input_images, input_urls], outputs=output_batch_label)
307
- # clear_button.click(clear_fields, outputs=[input_image, input_url, input_images, input_urls])
308
-
309
- # Launch the interface
310
- demo.launch()