# Copyright (c) 2024, Tri Dao, Albert Gu. import math import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange try: from flash_attn import flash_attn_with_kvcache except ImportError: flash_attn_with_kvcache = None try: from flash_attn.layers.rotary import RotaryEmbedding except ImportError: RotaryEmbedding = None try: from causal_conv1d import causal_conv1d_fn, causal_conv1d_update except ImportError: causal_conv1d_fn, causal_conv1d_update = None, None def _update_kv_cache(kv, inference_params, layer_idx): """kv: (batch_size, seqlen, 2, nheads, head_dim) or (batch_size, 1, 2, nheads, head_dim)""" # Pre-allocate memory for key-values for inference. num_heads, head_dim = kv.shape[-2:] assert layer_idx in inference_params.key_value_memory_dict kv_cache, _ = inference_params.key_value_memory_dict[layer_idx] # Adjust key and value for inference batch_start = inference_params.batch_size_offset batch_end = batch_start + kv.shape[0] sequence_start = inference_params.seqlen_offset sequence_end = sequence_start + kv.shape[1] assert batch_end <= kv_cache.shape[0] assert sequence_end <= kv_cache.shape[1] assert kv_cache is not None kv_cache[batch_start:batch_end, sequence_start:sequence_end, ...] = kv return kv_cache[batch_start:batch_end, :sequence_end, ...] class MHA(nn.Module): """Multi-head self-attention and cross-attention""" def __init__( self, embed_dim, num_heads, num_heads_kv=None, head_dim=None, # If None, use embed_dim // num_heads mlp_dim=0, qkv_proj_bias=True, out_proj_bias=True, softmax_scale=None, causal=False, layer_idx=None, d_conv=0, rotary_emb_dim=0, rotary_emb_base=10000.0, rotary_emb_interleaved=False, device=None, dtype=None, ) -> None: """ num_heads_kv: can be used to toggle MQA / GQA. If None, use num_heads. return_residual: whether to return the input x along with the output. This is for performance reason: for post-norm architecture, returning the input allows us to fuse the backward of nn.Linear with the residual connection. """ factory_kwargs = {"device": device, "dtype": dtype} super().__init__() self.embed_dim = embed_dim self.layer_idx = layer_idx self.d_conv = d_conv self.rotary_emb_dim = rotary_emb_dim self.softmax_scale = softmax_scale self.causal = causal self.num_heads = num_heads self.num_heads_kv = num_heads_kv if num_heads_kv is not None else num_heads assert ( self.num_heads % self.num_heads_kv == 0 ), "num_heads must be divisible by num_heads_kv" if head_dim is None: assert self.embed_dim % num_heads == 0, "embed_dim must be divisible by num_heads" self.head_dim = head_dim if head_dim is not None else self.embed_dim // num_heads self.mlp_dim = math.ceil(mlp_dim / 256) * 256 qkv_dim = self.head_dim * (self.num_heads + 2 * self.num_heads_kv) out_dim = self.head_dim * self.num_heads if self.rotary_emb_dim > 0: assert RotaryEmbedding is not None, "rotary requires flash_attn to be installed" self.rotary_emb = RotaryEmbedding( self.rotary_emb_dim, base=rotary_emb_base, interleaved=rotary_emb_interleaved, device=device, ) self.in_proj = nn.Linear(embed_dim, qkv_dim + self.mlp_dim, bias=qkv_proj_bias, **factory_kwargs) if self.d_conv > 0: self.conv1d = nn.Conv1d( qkv_dim, qkv_dim, kernel_size=self.d_conv, padding=self.d_conv - 1, groups=qkv_dim, **factory_kwargs ) self.out_proj = nn.Linear(out_dim + self.mlp_dim // 2, embed_dim, bias=out_proj_bias, **factory_kwargs) def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None): dtype = self.out_proj.weight.dtype if dtype is None else dtype device = self.out_proj.weight.device if self.d_conv > 0: conv_state = torch.zeros( batch_size, self.conv1d.weight.shape[0], self.d_conv, device=device, dtype=dtype ) else: conv_state = None kv_cache = torch.empty( batch_size, max_seqlen, 2, self.num_heads_kv, self.head_dim, dtype=dtype, device=device, ) return kv_cache, conv_state def _update_kv_cache(self, kv, inference_params): """kv: (batch_size, seqlen, 2, nheads, head_dim) or (batch_size, 1, 2, nheads, head_dim)""" assert self.layer_idx is not None, "Generation requires layer_idx in the constructor" return _update_kv_cache(kv, inference_params, self.layer_idx) def _apply_rotary_update_kvcache_attention(self, q, kv, inference_params): """ Fast path that combine 3 steps: apply rotary to Q and K, update kv cache, and apply attention. q: (batch_size, seqlen_q, nheads, head_dim) kv: (batch_size, seqlen_k, 2, nheads_kv, head_dim) """ assert inference_params is not None and inference_params.seqlen_offset > 0 if self.rotary_emb_dim > 0: self.rotary_emb._update_cos_sin_cache( inference_params.max_seqlen, device=q.device, dtype=q.dtype ) rotary_cos, rotary_sin = self.rotary_emb._cos_cached, self.rotary_emb._sin_cached else: rotary_cos, rotary_sin = None, None batch = q.shape[0] kv_cache, _ = inference_params.key_value_memory_dict[self.layer_idx] kv_cache = kv_cache[:batch] cache_seqlens = ( inference_params.lengths_per_sample[:batch] if inference_params.lengths_per_sample is not None else inference_params.seqlen_offset ) assert flash_attn_with_kvcache is not None, "flash_attn must be installed" context = flash_attn_with_kvcache( q, kv_cache[:, :, 0], kv_cache[:, :, 1], kv[:, :, 0], kv[:, :, 1], rotary_cos=rotary_cos, rotary_sin=rotary_sin, cache_seqlens=cache_seqlens, softmax_scale=self.softmax_scale, causal=self.causal, rotary_interleaved=self.rotary_emb.interleaved if self.rotary_emb_dim > 0 else False, ) return context def _update_kvcache_attention(self, q, kv, inference_params): """Write kv to inference_params, then do attention""" if ( inference_params.seqlen_offset == 0 or flash_attn_with_kvcache is None ): # TODO: this only uses seqlen_offset and not lengths_per_sample. kv = self._update_kv_cache(kv, inference_params) k, v = kv.unbind(dim=-3) k = torch.repeat_interleave(k, dim=2, repeats=self.num_heads // self.num_heads_kv) v = torch.repeat_interleave(v, dim=2, repeats=self.num_heads // self.num_heads_kv) return F.scaled_dot_product_attention( q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), is_causal=self.causal, scale=self.softmax_scale ).transpose(1, 2) else: batch = q.shape[0] kv_cache, _ = inference_params.key_value_memory_dict[self.layer_idx] kv_cache = kv_cache[:batch] cache_seqlens = ( inference_params.lengths_per_sample[:batch] if inference_params.lengths_per_sample is not None else inference_params.seqlen_offset ) return flash_attn_with_kvcache( q, kv_cache[:, :, 0], kv_cache[:, :, 1], kv[:, :, 0], kv[:, :, 1], cache_seqlens=cache_seqlens, softmax_scale=self.softmax_scale, causal=self.causal, ) def forward(self, x, inference_params=None): """ Arguments: x: (batch, seqlen, hidden_dim) (where hidden_dim = num heads * head dim) if cu_seqlens is None and max_seqlen is None, else (total, hidden_dim) where total is the is the sum of the sequence lengths in the batch. inference_params: for generation. Adapted from Megatron-LM (and Apex) https://github.com/NVIDIA/apex/blob/3ff1a10f72ec07067c4e44759442329804ac5162/apex/transformer/testing/standalone_transformer_lm.py#L470 """ if inference_params is not None and self.layer_idx not in inference_params.key_value_memory_dict: inference_params.key_value_memory_dict[self.layer_idx] = self.allocate_inference_cache( x.shape[0], inference_params.max_seqlen, dtype=x.dtype ) seqlen_offset = ( 0 if inference_params is None else ( inference_params.lengths_per_sample if inference_params.lengths_per_sample is not None else inference_params.seqlen_offset ) ) rotary_max_seqlen = inference_params.max_seqlen if inference_params is not None else None qkv = self.in_proj(x) if self.mlp_dim > 0: qkv, x_mlp = qkv.split([qkv.shape[-1] - self.mlp_dim, self.mlp_dim], dim=-1) x_mlp_up, x_mlp_gate = x_mlp.chunk(2, dim=-1) x_mlp = x_mlp_up * F.silu(x_mlp_gate) if self.d_conv > 0: # The inference code for conv1d is pretty messy, should clean it up if (inference_params is None or inference_params.seqlen_offset == 0): if causal_conv1d_fn is None: qkv = rearrange( self.conv1d(rearrange(qkv, "b s d -> b d s"))[..., :-(self.d_conv - 1)], "b d s -> b s d" ).contiguous() else: qkv = causal_conv1d_fn( qkv.transpose(1, 2), rearrange(self.conv1d.weight, "d 1 w -> d w"), self.conv1d.bias ).transpose(1, 2) if inference_params is not None: _, conv_state = inference_params.key_value_memory_dict[self.layer_idx] # If we just take qkv[:, :, -self.d_conv :], it will error if seqlen < self.d_conv # Instead F.pad will pad with zeros if seqlen < self.d_conv, and truncate otherwise. qkv_t = rearrange(qkv, "b l d -> b d l") conv_state.copy_(F.pad(qkv_t, (self.d_conv - qkv_t.shape[-1], 0))) # Update state (B D W) else: _, conv_state = inference_params.key_value_memory_dict[self.layer_idx] assert qkv.shape[1] == 1, "Only support decoding with 1 token at a time for now" qkv = qkv.squeeze(1) # Conv step if causal_conv1d_update is None: conv_state.copy_(torch.roll(conv_state, shifts=-1, dims=-1)) # Update state (B D W) conv_state[:, :, -1] = qkv qkv = torch.sum(conv_state * rearrange(self.conv1d.weight, "d 1 w -> d w"), dim=-1) # (B D) if self.conv1d.bias is not None: qkv = qkv + self.conv1d.bias else: qkv = causal_conv1d_update( qkv, conv_state, rearrange(self.conv1d.weight, "d 1 w -> d w"), self.conv1d.bias ) qkv = qkv.unsqueeze(1) q, kv = qkv.split([self.num_heads * self.head_dim, self.num_heads_kv * 2 * self.head_dim], dim=-1) q = rearrange(q, "... (h d) -> ... h d", d=self.head_dim) kv = rearrange(kv, "... (two hkv d) -> ... two hkv d", two=2, d=self.head_dim) if ( inference_params is None or inference_params.seqlen_offset == 0 or (self.rotary_emb_dim == 0 or self.rotary_emb_dim % 16 != 0) ): if self.rotary_emb_dim > 0: q, kv = self.rotary_emb( q, kv, seqlen_offset=seqlen_offset, max_seqlen=rotary_max_seqlen ) if inference_params is None: k, v = kv.unbind(dim=-3) k = torch.repeat_interleave(k, dim=2, repeats=self.num_heads // self.num_heads_kv) v = torch.repeat_interleave(v, dim=2, repeats=self.num_heads // self.num_heads_kv) context = F.scaled_dot_product_attention( q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), is_causal=self.causal, scale=self.softmax_scale ).transpose(1, 2) else: context = self._update_kvcache_attention(q, kv, inference_params) else: context = self._apply_rotary_update_kvcache_attention(q, kv, inference_params) context = rearrange(context, "... h d -> ... (h d)") if self.mlp_dim > 0: context = torch.cat([context, x_mlp], dim=-1) out = self.out_proj(context) return out