# Copyright (c) 2024, Tri Dao, Albert Gu. from typing import Optional import torch from torch import nn, Tensor from mamba_ssm.ops.triton.layer_norm import RMSNorm, layer_norm_fn class Block(nn.Module): def __init__( self, dim, mixer_cls, mlp_cls, norm_cls=nn.LayerNorm, fused_add_norm=False, residual_in_fp32=False ): """ Simple block wrapping a mixer class with LayerNorm/RMSNorm and residual connection" This Block has a slightly different structure compared to a regular prenorm Transformer block. The standard block is: LN -> MHA/MLP -> Add. [Ref: https://arxiv.org/abs/2002.04745] Here we have: Add -> LN -> Mixer, returning both the hidden_states (output of the mixer) and the residual. This is purely for performance reasons, as we can fuse add and LayerNorm. The residual needs to be provided (except for the very first block). """ super().__init__() self.residual_in_fp32 = residual_in_fp32 self.fused_add_norm = fused_add_norm self.norm = norm_cls(dim) self.mixer = mixer_cls(dim) if mlp_cls is not nn.Identity: self.norm2 = norm_cls(dim) self.mlp = mlp_cls(dim) else: self.mlp = None if self.fused_add_norm: assert RMSNorm is not None, "RMSNorm import fails" assert isinstance( self.norm, (nn.LayerNorm, RMSNorm) ), "Only LayerNorm and RMSNorm are supported for fused_add_norm" def forward( self, hidden_states: Tensor, residual: Optional[Tensor] = None, inference_params=None, **mixer_kwargs ): r"""Pass the input through the encoder layer. Args: hidden_states: the sequence to the encoder layer (required). residual: hidden_states = Mixer(LN(residual)) """ if not self.fused_add_norm: residual = (hidden_states + residual) if residual is not None else hidden_states hidden_states = self.norm(residual.to(dtype=self.norm.weight.dtype)) if self.residual_in_fp32: residual = residual.to(torch.float32) else: hidden_states, residual = layer_norm_fn( hidden_states, self.norm.weight, self.norm.bias, residual=residual, prenorm=True, residual_in_fp32=self.residual_in_fp32, eps=self.norm.eps, is_rms_norm=isinstance(self.norm, RMSNorm) ) hidden_states = self.mixer(hidden_states, inference_params=inference_params, **mixer_kwargs) if self.mlp is not None: if not self.fused_add_norm: residual = hidden_states + residual hidden_states = self.norm2(residual.to(dtype=self.norm2.weight.dtype)) if self.residual_in_fp32: residual = residual.to(torch.float32) else: hidden_states, residual = layer_norm_fn( hidden_states, self.norm2.weight, self.norm2.bias, residual=residual, prenorm=True, residual_in_fp32=self.residual_in_fp32, eps=self.norm2.eps, is_rms_norm=isinstance(self.norm2, RMSNorm) ) hidden_states = self.mlp(hidden_states) return hidden_states, residual def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs): return self.mixer.allocate_inference_cache(batch_size, max_seqlen, dtype=dtype, **kwargs)