Spaces:
Running
on
L40S
Running
on
L40S
File size: 17,887 Bytes
38e20ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 |
import torch
import cv2
import os
import sys
import numpy as np
import argparse
import math
from PIL import Image
from decord import VideoReader
from skimage.transform import estimate_transform, warp
from insightface.app import FaceAnalysis
from diffusers.utils import load_image
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from skyreels_a1.src.utils.mediapipe_utils import MediaPipeUtils
from skyreels_a1.src.smirk_encoder import SmirkEncoder
from skyreels_a1.src.FLAME.FLAME import FLAME
from skyreels_a1.src.renderer import Renderer
from moviepy.editor import ImageSequenceClip
class FaceAnimationProcessor:
def __init__(self, device='cuda', checkpoint="pretrained_models/smirk/smirk_encoder.pt"):
self.device = device
self.app = FaceAnalysis(allowed_modules=['detection'])
self.app.prepare(ctx_id=0, det_size=(640, 640))
self.smirk_encoder = SmirkEncoder().to(device)
self.flame = FLAME(n_shape=300, n_exp=50).to(device)
self.renderer = Renderer().to(device)
self.load_checkpoint(checkpoint)
def load_checkpoint(self, checkpoint):
checkpoint_data = torch.load(checkpoint)
checkpoint_encoder = {k.replace('smirk_encoder.', ''): v for k, v in checkpoint_data.items() if 'smirk_encoder' in k}
self.smirk_encoder.load_state_dict(checkpoint_encoder)
self.smirk_encoder.eval()
def face_crop(self, image):
height, width, _ = image.shape
faces = self.app.get(image)
bbox = faces[0]['bbox']
w = bbox[2] - bbox[0]
h = bbox[3] - bbox[1]
x1 = max(0, int(bbox[0] - w/2))
x2 = min(width - 1, int(bbox[2] + w/2))
w_new = x2 - x1
y_offset = (w_new - h) / 2.
y1 = max(0, int(bbox[1] - y_offset))
y2 = min(height, int(bbox[3] + y_offset))
x_comp = int(((x2 - x1) - (y2 - y1)) / 2) if (x2 - x1) > (y2 - y1) else 0
x1 += x_comp
x2 -= x_comp
image_crop = image[y1:y2, x1:x2]
return image_crop, x1, y1
def crop_and_resize(self, image, height, width):
image = np.array(image)
image_height, image_width, _ = image.shape
if image_height / image_width < height / width:
croped_width = int(image_height / height * width)
left = (image_width - croped_width) // 2
image = image[:, left: left+croped_width]
else:
pad = int((((width / height) * image_height) - image_width) / 2.)
padded_image = np.zeros((image_height, image_width + pad * 2, 3), dtype=np.uint8)
padded_image[:, pad:pad+image_width] = image
image = padded_image
return Image.fromarray(image).resize((width, height))
def rodrigues_to_matrix(self, pose_params):
theta = torch.norm(pose_params, dim=-1, keepdim=True)
r = pose_params / (theta + 1e-8)
cos_theta = torch.cos(theta)
sin_theta = torch.sin(theta)
r_x = torch.zeros((pose_params.shape[0], 3, 3), device=pose_params.device)
r_x[:, 0, 1] = -r[:, 2]
r_x[:, 0, 2] = r[:, 1]
r_x[:, 1, 0] = r[:, 2]
r_x[:, 1, 2] = -r[:, 0]
r_x[:, 2, 0] = -r[:, 1]
r_x[:, 2, 1] = r[:, 0]
R = cos_theta * torch.eye(3, device=pose_params.device).unsqueeze(0) + \
sin_theta * r_x + \
(1 - cos_theta) * r.unsqueeze(-1) @ r.unsqueeze(-2)
return R
def matrix_to_rodrigues(self, R):
cos_theta = (torch.trace(R[0]) - 1) / 2
cos_theta = torch.clamp(cos_theta, -1, 1)
theta = torch.acos(cos_theta)
if abs(theta) < 1e-4:
return torch.zeros(1, 3, device=R.device)
elif abs(theta - math.pi) < 1e-4:
R_plus_I = R[0] + torch.eye(3, device=R.device)
col_norms = torch.norm(R_plus_I, dim=0)
max_col_idx = torch.argmax(col_norms)
v = R_plus_I[:, max_col_idx]
v = v / torch.norm(v)
return (v * math.pi).unsqueeze(0)
sin_theta = torch.sin(theta)
r = torch.zeros(1, 3, device=R.device)
r[0, 0] = R[0, 2, 1] - R[0, 1, 2]
r[0, 1] = R[0, 0, 2] - R[0, 2, 0]
r[0, 2] = R[0, 1, 0] - R[0, 0, 1]
r = r / (2 * sin_theta)
return r * theta
def crop_face(self, frame, landmarks, scale=1.0, image_size=224):
left = np.min(landmarks[:, 0])
right = np.max(landmarks[:, 0])
top = np.min(landmarks[:, 1])
bottom = np.max(landmarks[:, 1])
h, w, _ = frame.shape
old_size = (right - left + bottom - top) / 2
center = np.array([right - (right - left) / 2.0, bottom - (bottom - top) / 2.0])
size = int(old_size * scale)
src_pts = np.array([[center[0] - size / 2, center[1] - size / 2], [center[0] - size / 2, center[1] + size / 2],
[center[0] + size / 2, center[1] - size / 2]])
DST_PTS = np.array([[0, 0], [0, image_size - 1], [image_size - 1, 0]])
tform = estimate_transform('similarity', src_pts, DST_PTS)
tform_original = estimate_transform('similarity', src_pts, src_pts)
return tform, tform_original
def compute_landmark_relation(self, kpt_mediapipe, target_idx=473, ref_indices=[362, 382, 381, 380, 374, 373, 390, 249, 263, 466, 388, 387, 386, 385, 384, 398]):
target_point = kpt_mediapipe[target_idx]
ref_points = kpt_mediapipe[ref_indices]
left_corner = ref_points[0]
right_corner = ref_points[8]
eye_center = (left_corner + right_corner) / 2
eye_width_vector = right_corner - left_corner
eye_width = np.linalg.norm(eye_width_vector)
eye_direction = eye_width_vector / eye_width
eye_vertical = np.array([-eye_direction[1], eye_direction[0]])
target_vector = target_point - eye_center
x_relative = np.dot(target_vector, eye_direction) / (eye_width/2)
y_relative = np.dot(target_vector, eye_vertical) / (eye_width/2)
return [np.array([x_relative, y_relative]),target_point,ref_points,ref_indices]
def process_source_image(self, image_rgb, input_size=224):
image_bgr = cv2.cvtColor(image_rgb, cv2.COLOR_RGB2BGR)
mediapipe_utils = MediaPipeUtils()
kpt_mediapipe, _, _, mediapipe_eye_pose = mediapipe_utils.run_mediapipe(image_bgr)
if kpt_mediapipe is None:
raise ValueError('Cannot find facial landmarks in the source image')
kpt_mediapipe = kpt_mediapipe[..., :2]
tform, _ = self.crop_face(image_rgb, kpt_mediapipe, scale=1.4, image_size=input_size)
cropped_image = warp(image_rgb, tform.inverse, output_shape=(input_size, input_size), preserve_range=True).astype(np.uint8)
cropped_image = torch.tensor(cropped_image).permute(2, 0, 1).unsqueeze(0).float() / 255.0
cropped_image = cropped_image.to(self.device)
with torch.no_grad():
source_outputs = self.smirk_encoder(cropped_image)
source_outputs['eye_pose_params'] = torch.tensor(mediapipe_eye_pose).to(self.device)
return source_outputs, tform, image_rgb
def smooth_params(self, data, alpha=0.7):
smoothed_data = [data[0]]
for i in range(1, len(data)):
smoothed_value = alpha * data[i] + (1 - alpha) * smoothed_data[i-1]
smoothed_data.append(smoothed_value)
return smoothed_data
def process_driving_img_list(self, img_list, input_size=224):
driving_frames = []
driving_outputs = []
driving_tforms = []
weights_473 = []
weights_468 = []
mediapipe_utils = MediaPipeUtils()
for i, frame in enumerate(img_list):
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
try:
kpt_mediapipe, mediapipe_exp, mediapipe_pose, mediapipe_eye_pose = mediapipe_utils.run_mediapipe(frame)
except:
print('Warning: No face detected in a frame, skipping this frame')
continue
if kpt_mediapipe is None:
print('Warning: No face detected in a frame, skipping this frame')
continue
kpt_mediapipe = kpt_mediapipe[..., :2]
weights_473.append(self.compute_landmark_relation(kpt_mediapipe))
weights_468.append(self.compute_landmark_relation(kpt_mediapipe, target_idx=468, ref_indices=[33, 7, 163, 144, 145, 153, 154, 155, 133, 173, 157, 158, 159, 160, 161, 246]))
tform, _ = self.crop_face(frame, kpt_mediapipe, scale=1.4, image_size=input_size)
cropped_frame = warp(frame, tform.inverse, output_shape=(input_size, input_size), preserve_range=True).astype(np.uint8)
cropped_frame = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2RGB)
cropped_frame = torch.tensor(cropped_frame).permute(2, 0, 1).unsqueeze(0).float() / 255.0
cropped_frame = cropped_frame.to(self.device)
with torch.no_grad():
outputs = self.smirk_encoder(cropped_frame)
outputs['eye_pose_params'] = torch.tensor(mediapipe_eye_pose).to(self.device)
outputs['mediapipe_exp'] = torch.tensor(mediapipe_exp).to(self.device)
outputs['mediapipe_pose'] = torch.tensor(mediapipe_pose).to(self.device)
driving_frames.append(frame)
driving_outputs.append(outputs)
driving_tforms.append(tform)
return driving_frames, driving_outputs, driving_tforms, weights_473, weights_468
def preprocess_lmk3d(self, source_image=None, driving_image_list=None):
source_outputs, source_tform, image_original = self.process_source_image(source_image)
_, driving_outputs, driving_video_tform, weights_473, weights_468 = self.process_driving_img_list(driving_image_list)
driving_outputs_list = []
source_pose_init = source_outputs['pose_params'].clone()
driving_outputs_pose = [outputs['pose_params'] for outputs in driving_outputs]
driving_outputs_pose = self.smooth_params(driving_outputs_pose)
for i, outputs in enumerate(driving_outputs):
outputs['pose_params'] = driving_outputs_pose[i]
source_outputs['expression_params'] = outputs['expression_params']
source_outputs['jaw_params'] = outputs['jaw_params']
source_outputs['eye_pose_params'] = outputs['eye_pose_params']
source_matrix = self.rodrigues_to_matrix(source_pose_init)
driving_matrix_0 = self.rodrigues_to_matrix(driving_outputs[0]['pose_params'])
driving_matrix_i = self.rodrigues_to_matrix(driving_outputs[i]['pose_params'])
relative_rotation = torch.inverse(driving_matrix_0) @ driving_matrix_i
new_rotation = source_matrix @ relative_rotation
source_outputs['pose_params'] = self.matrix_to_rodrigues(new_rotation)
source_outputs['eyelid_params'] = outputs['eyelid_params']
flame_output = self.flame.forward(source_outputs)
renderer_output = self.renderer.forward(
flame_output['vertices'],
source_outputs['cam'],
landmarks_fan=flame_output['landmarks_fan'], source_tform=source_tform,
tform_512=None, weights_468=weights_468[i], weights_473=weights_473[i],
landmarks_mp=flame_output['landmarks_mp'], shape=image_original.shape)
rendered_img = renderer_output['rendered_img']
driving_outputs_list.extend(np.copy(rendered_img)[np.newaxis, :])
return driving_outputs_list
def preprocess_lmk3d_from_coef(self, source_outputs, source_tform, render_shape, driving_outputs):
driving_outputs_list = []
source_pose_init = source_outputs['pose_params'].clone()
driving_outputs_pose = [outputs['pose_params'] for outputs in driving_outputs]
driving_outputs_pose = self.smooth_params(driving_outputs_pose)
for i, outputs in enumerate(driving_outputs):
outputs['pose_params'] = driving_outputs_pose[i]
source_outputs['expression_params'] = outputs['expression_params']
source_outputs['jaw_params'] = outputs['jaw_params']
source_outputs['eye_pose_params'] = outputs['eye_pose_params']
source_matrix = self.rodrigues_to_matrix(source_pose_init)
driving_matrix_0 = self.rodrigues_to_matrix(driving_outputs[0]['pose_params'])
driving_matrix_i = self.rodrigues_to_matrix(driving_outputs[i]['pose_params'])
relative_rotation = torch.inverse(driving_matrix_0) @ driving_matrix_i
new_rotation = source_matrix @ relative_rotation
source_outputs['pose_params'] = self.matrix_to_rodrigues(new_rotation)
source_outputs['eyelid_params'] = outputs['eyelid_params']
flame_output = self.flame.forward(source_outputs)
renderer_output = self.renderer.forward(
flame_output['vertices'],
source_outputs['cam'],
landmarks_fan=flame_output['landmarks_fan'], source_tform=source_tform,
tform_512=None, weights_468=None, weights_473=None,
landmarks_mp=flame_output['landmarks_mp'], shape=render_shape)
rendered_img = renderer_output['rendered_img']
driving_outputs_list.extend(np.copy(rendered_img)[np.newaxis, :])
return driving_outputs_list
def ensure_even_dimensions(self, frame):
height, width = frame.shape[:2]
new_width = width - (width % 2)
new_height = height - (height % 2)
if new_width != width or new_height != height:
frame = cv2.resize(frame, (new_width, new_height))
return frame
def get_global_bbox(self, frames):
max_x1, max_y1, max_x2, max_y2 = float('inf'), float('inf'), 0, 0
for frame in frames:
faces = self.app.get(frame)
if not faces:
continue
bbox = faces[0]['bbox']
x1, y1, x2, y2 = bbox[0], bbox[1], bbox[2], bbox[3]
max_x1 = min(max_x1, x1)
max_y1 = min(max_y1, y1)
max_x2 = max(max_x2, x2)
max_y2 = max(max_y2, y2)
w = max_x2 - max_x1
h = max_y2 - max_y1
x1 = int(max_x1 - w / 2)
x2 = int(max_x2 + w / 2)
y_offset = (x2 - x1 - h) / 2
y1 = int(max_y1 - y_offset)
y2 = int(max_y2 + y_offset)
if (x2 - x1) > (y2 - y1):
x_comp = int(((x2 - x1) - (y2 - y1)) / 2)
x1 += x_comp
x2 -= x_comp
else:
y_comp = int(((y2 - y1) - (x2 - x1)) / 2)
y1 += y_comp
y2 -= y_comp
x1 = max(0, x1)
y1 = max(0, y1)
x2 = min(frames[0].shape[1], x2)
y2 = min(frames[0].shape[0], y2)
return int(x1), int(y1), int(x2), int(y2)
def face_crop_with_global_box(self, image, global_box):
x1, y1, x2, y2 = global_box
return image[y1:y2, x1:x2]
def process_video(self, source_image_path, driving_video_path, output_path, sample_size=[480, 720]):
image = load_image(source_image_path)
image = self.crop_and_resize(image, sample_size[0], sample_size[1])
ref_image = np.array(image)
ref_image, x1, y1 = self.face_crop(ref_image)
face_h, face_w, _ = ref_image.shape
vr = VideoReader(driving_video_path)
fps = vr.get_avg_fps()
video_length = len(vr)
duration = video_length / fps
target_times = np.arange(0, duration, 1/12)
frame_indices = (target_times * fps).astype(np.int32)
frame_indices = frame_indices[frame_indices < video_length]
control_frames = vr.get_batch(frame_indices).asnumpy()[:48]
if len(control_frames) < 49:
video_lenght_add = 49 - len(control_frames)
control_frames = np.concatenate(([control_frames[0]]*2, control_frames[1:len(control_frames)-2], [control_frames[-1]] * video_lenght_add), axis=0)
control_frames_crop = []
global_box = self.get_global_bbox(control_frames)
for control_frame in control_frames:
frame = self.face_crop_with_global_box(control_frame, global_box)
control_frames_crop.append(frame)
out_frames = self.preprocess_lmk3d(source_image=ref_image, driving_image_list=control_frames_crop)
def write_mp4(video_path, samples, fps=14):
clip = ImageSequenceClip(samples, fps=fps)
clip.write_videofile(video_path, codec='libx264', ffmpeg_params=["-pix_fmt", "yuv420p", "-crf", "23", "-preset", "medium"])
concat_frames = []
for i in range(len(out_frames)):
ref_image_concat = ref_image.copy()
driving_frame = cv2.resize(control_frames_crop[i], (face_w, face_h))
out_frame = cv2.resize(out_frames[i], (face_w, face_h))
concat_frame = np.concatenate([ref_image_concat, driving_frame, out_frame], axis=1)
concat_frame = self.ensure_even_dimensions(concat_frame)
concat_frames.append(concat_frame)
write_mp4(output_path, concat_frames, fps=12)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Process video and image for face animation.")
parser.add_argument('--source_image', type=str, default="assets/ref_images/1.png", help='Path to the source image.')
parser.add_argument('--driving_video', type=str, default="assets/driving_video/1.mp4", help='Path to the driving video.')
parser.add_argument('--output_path', type=str, default="./output.mp4", help='Path to save the output video.')
args = parser.parse_args()
processor = FaceAnimationProcessor(checkpoint='pretrained_models/smirk/SMIRK_em1.pt')
processor.process_video(args.source_image, args.driving_video, args.output_path) |