Spaces:
Running
Running
| """ | |
| Main File for Files API implementation | |
| https://platform.openai.com/docs/api-reference/files | |
| """ | |
| import asyncio | |
| import contextvars | |
| import os | |
| from functools import partial | |
| from typing import Any, Coroutine, Dict, Literal, Optional, Union, cast | |
| import httpx | |
| import litellm | |
| from litellm import get_secret_str | |
| from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj | |
| from litellm.llms.azure.files.handler import AzureOpenAIFilesAPI | |
| from litellm.llms.custom_httpx.llm_http_handler import BaseLLMHTTPHandler | |
| from litellm.llms.openai.openai import FileDeleted, FileObject, OpenAIFilesAPI | |
| from litellm.llms.vertex_ai.files.handler import VertexAIFilesHandler | |
| from litellm.types.llms.openai import ( | |
| CreateFileRequest, | |
| FileContentRequest, | |
| FileTypes, | |
| HttpxBinaryResponseContent, | |
| OpenAIFileObject, | |
| ) | |
| from litellm.types.router import * | |
| from litellm.types.utils import LlmProviders | |
| from litellm.utils import ( | |
| ProviderConfigManager, | |
| client, | |
| get_litellm_params, | |
| supports_httpx_timeout, | |
| ) | |
| base_llm_http_handler = BaseLLMHTTPHandler() | |
| ####### ENVIRONMENT VARIABLES ################### | |
| openai_files_instance = OpenAIFilesAPI() | |
| azure_files_instance = AzureOpenAIFilesAPI() | |
| vertex_ai_files_instance = VertexAIFilesHandler() | |
| ################################################# | |
| async def acreate_file( | |
| file: FileTypes, | |
| purpose: Literal["assistants", "batch", "fine-tune"], | |
| custom_llm_provider: Literal["openai", "azure", "vertex_ai"] = "openai", | |
| extra_headers: Optional[Dict[str, str]] = None, | |
| extra_body: Optional[Dict[str, str]] = None, | |
| **kwargs, | |
| ) -> OpenAIFileObject: | |
| """ | |
| Async: Files are used to upload documents that can be used with features like Assistants, Fine-tuning, and Batch API. | |
| LiteLLM Equivalent of POST: POST https://api.openai.com/v1/files | |
| """ | |
| try: | |
| loop = asyncio.get_event_loop() | |
| kwargs["acreate_file"] = True | |
| call_args = { | |
| "file": file, | |
| "purpose": purpose, | |
| "custom_llm_provider": custom_llm_provider, | |
| "extra_headers": extra_headers, | |
| "extra_body": extra_body, | |
| **kwargs, | |
| } | |
| # Use a partial function to pass your keyword arguments | |
| func = partial(create_file, **call_args) | |
| # Add the context to the function | |
| ctx = contextvars.copy_context() | |
| func_with_context = partial(ctx.run, func) | |
| init_response = await loop.run_in_executor(None, func_with_context) | |
| if asyncio.iscoroutine(init_response): | |
| response = await init_response | |
| else: | |
| response = init_response # type: ignore | |
| return response | |
| except Exception as e: | |
| raise e | |
| def create_file( | |
| file: FileTypes, | |
| purpose: Literal["assistants", "batch", "fine-tune"], | |
| custom_llm_provider: Optional[Literal["openai", "azure", "vertex_ai"]] = None, | |
| extra_headers: Optional[Dict[str, str]] = None, | |
| extra_body: Optional[Dict[str, str]] = None, | |
| **kwargs, | |
| ) -> Union[OpenAIFileObject, Coroutine[Any, Any, OpenAIFileObject]]: | |
| """ | |
| Files are used to upload documents that can be used with features like Assistants, Fine-tuning, and Batch API. | |
| LiteLLM Equivalent of POST: POST https://api.openai.com/v1/files | |
| Specify either provider_list or custom_llm_provider. | |
| """ | |
| try: | |
| _is_async = kwargs.pop("acreate_file", False) is True | |
| optional_params = GenericLiteLLMParams(**kwargs) | |
| litellm_params_dict = get_litellm_params(**kwargs) | |
| logging_obj = cast( | |
| Optional[LiteLLMLoggingObj], kwargs.get("litellm_logging_obj") | |
| ) | |
| if logging_obj is None: | |
| raise ValueError("logging_obj is required") | |
| client = kwargs.get("client") | |
| ### TIMEOUT LOGIC ### | |
| timeout = optional_params.timeout or kwargs.get("request_timeout", 600) or 600 | |
| # set timeout for 10 minutes by default | |
| if ( | |
| timeout is not None | |
| and isinstance(timeout, httpx.Timeout) | |
| and supports_httpx_timeout(cast(str, custom_llm_provider)) is False | |
| ): | |
| read_timeout = timeout.read or 600 | |
| timeout = read_timeout # default 10 min timeout | |
| elif timeout is not None and not isinstance(timeout, httpx.Timeout): | |
| timeout = float(timeout) # type: ignore | |
| elif timeout is None: | |
| timeout = 600.0 | |
| _create_file_request = CreateFileRequest( | |
| file=file, | |
| purpose=purpose, | |
| extra_headers=extra_headers, | |
| extra_body=extra_body, | |
| ) | |
| provider_config = ProviderConfigManager.get_provider_files_config( | |
| model="", | |
| provider=LlmProviders(custom_llm_provider), | |
| ) | |
| if provider_config is not None: | |
| response = base_llm_http_handler.create_file( | |
| provider_config=provider_config, | |
| litellm_params=litellm_params_dict, | |
| create_file_data=_create_file_request, | |
| headers=extra_headers or {}, | |
| api_base=optional_params.api_base, | |
| api_key=optional_params.api_key, | |
| logging_obj=logging_obj, | |
| _is_async=_is_async, | |
| client=client | |
| if client is not None | |
| and isinstance(client, (HTTPHandler, AsyncHTTPHandler)) | |
| else None, | |
| timeout=timeout, | |
| ) | |
| elif custom_llm_provider == "openai": | |
| # for deepinfra/perplexity/anyscale/groq we check in get_llm_provider and pass in the api base from there | |
| api_base = ( | |
| optional_params.api_base | |
| or litellm.api_base | |
| or os.getenv("OPENAI_BASE_URL") | |
| or os.getenv("OPENAI_API_BASE") | |
| or "https://api.openai.com/v1" | |
| ) | |
| organization = ( | |
| optional_params.organization | |
| or litellm.organization | |
| or os.getenv("OPENAI_ORGANIZATION", None) | |
| or None # default - https://github.com/openai/openai-python/blob/284c1799070c723c6a553337134148a7ab088dd8/openai/util.py#L105 | |
| ) | |
| # set API KEY | |
| api_key = ( | |
| optional_params.api_key | |
| or litellm.api_key # for deepinfra/perplexity/anyscale we check in get_llm_provider and pass in the api key from there | |
| or litellm.openai_key | |
| or os.getenv("OPENAI_API_KEY") | |
| ) | |
| response = openai_files_instance.create_file( | |
| _is_async=_is_async, | |
| api_base=api_base, | |
| api_key=api_key, | |
| timeout=timeout, | |
| max_retries=optional_params.max_retries, | |
| organization=organization, | |
| create_file_data=_create_file_request, | |
| ) | |
| elif custom_llm_provider == "azure": | |
| api_base = optional_params.api_base or litellm.api_base or get_secret_str("AZURE_API_BASE") # type: ignore | |
| api_version = ( | |
| optional_params.api_version | |
| or litellm.api_version | |
| or get_secret_str("AZURE_API_VERSION") | |
| ) # type: ignore | |
| api_key = ( | |
| optional_params.api_key | |
| or litellm.api_key | |
| or litellm.azure_key | |
| or get_secret_str("AZURE_OPENAI_API_KEY") | |
| or get_secret_str("AZURE_API_KEY") | |
| ) # type: ignore | |
| extra_body = optional_params.get("extra_body", {}) | |
| if extra_body is not None: | |
| extra_body.pop("azure_ad_token", None) | |
| else: | |
| get_secret_str("AZURE_AD_TOKEN") # type: ignore | |
| response = azure_files_instance.create_file( | |
| _is_async=_is_async, | |
| api_base=api_base, | |
| api_key=api_key, | |
| api_version=api_version, | |
| timeout=timeout, | |
| max_retries=optional_params.max_retries, | |
| create_file_data=_create_file_request, | |
| litellm_params=litellm_params_dict, | |
| ) | |
| elif custom_llm_provider == "vertex_ai": | |
| api_base = optional_params.api_base or "" | |
| vertex_ai_project = ( | |
| optional_params.vertex_project | |
| or litellm.vertex_project | |
| or get_secret_str("VERTEXAI_PROJECT") | |
| ) | |
| vertex_ai_location = ( | |
| optional_params.vertex_location | |
| or litellm.vertex_location | |
| or get_secret_str("VERTEXAI_LOCATION") | |
| ) | |
| vertex_credentials = optional_params.vertex_credentials or get_secret_str( | |
| "VERTEXAI_CREDENTIALS" | |
| ) | |
| response = vertex_ai_files_instance.create_file( | |
| _is_async=_is_async, | |
| api_base=api_base, | |
| vertex_project=vertex_ai_project, | |
| vertex_location=vertex_ai_location, | |
| vertex_credentials=vertex_credentials, | |
| timeout=timeout, | |
| max_retries=optional_params.max_retries, | |
| create_file_data=_create_file_request, | |
| ) | |
| else: | |
| raise litellm.exceptions.BadRequestError( | |
| message="LiteLLM doesn't support {} for 'create_file'. Only ['openai', 'azure', 'vertex_ai'] are supported.".format( | |
| custom_llm_provider | |
| ), | |
| model="n/a", | |
| llm_provider=custom_llm_provider, | |
| response=httpx.Response( | |
| status_code=400, | |
| content="Unsupported provider", | |
| request=httpx.Request(method="create_file", url="https://github.com/BerriAI/litellm"), # type: ignore | |
| ), | |
| ) | |
| return response | |
| except Exception as e: | |
| raise e | |
| async def afile_retrieve( | |
| file_id: str, | |
| custom_llm_provider: Literal["openai", "azure"] = "openai", | |
| extra_headers: Optional[Dict[str, str]] = None, | |
| extra_body: Optional[Dict[str, str]] = None, | |
| **kwargs, | |
| ): | |
| """ | |
| Async: Get file contents | |
| LiteLLM Equivalent of GET https://api.openai.com/v1/files | |
| """ | |
| try: | |
| loop = asyncio.get_event_loop() | |
| kwargs["is_async"] = True | |
| # Use a partial function to pass your keyword arguments | |
| func = partial( | |
| file_retrieve, | |
| file_id, | |
| custom_llm_provider, | |
| extra_headers, | |
| extra_body, | |
| **kwargs, | |
| ) | |
| # Add the context to the function | |
| ctx = contextvars.copy_context() | |
| func_with_context = partial(ctx.run, func) | |
| init_response = await loop.run_in_executor(None, func_with_context) | |
| if asyncio.iscoroutine(init_response): | |
| response = await init_response | |
| else: | |
| response = init_response | |
| return response | |
| except Exception as e: | |
| raise e | |
| def file_retrieve( | |
| file_id: str, | |
| custom_llm_provider: Literal["openai", "azure"] = "openai", | |
| extra_headers: Optional[Dict[str, str]] = None, | |
| extra_body: Optional[Dict[str, str]] = None, | |
| **kwargs, | |
| ) -> FileObject: | |
| """ | |
| Returns the contents of the specified file. | |
| LiteLLM Equivalent of POST: POST https://api.openai.com/v1/files | |
| """ | |
| try: | |
| optional_params = GenericLiteLLMParams(**kwargs) | |
| ### TIMEOUT LOGIC ### | |
| timeout = optional_params.timeout or kwargs.get("request_timeout", 600) or 600 | |
| # set timeout for 10 minutes by default | |
| if ( | |
| timeout is not None | |
| and isinstance(timeout, httpx.Timeout) | |
| and supports_httpx_timeout(custom_llm_provider) is False | |
| ): | |
| read_timeout = timeout.read or 600 | |
| timeout = read_timeout # default 10 min timeout | |
| elif timeout is not None and not isinstance(timeout, httpx.Timeout): | |
| timeout = float(timeout) # type: ignore | |
| elif timeout is None: | |
| timeout = 600.0 | |
| _is_async = kwargs.pop("is_async", False) is True | |
| if custom_llm_provider == "openai": | |
| # for deepinfra/perplexity/anyscale/groq we check in get_llm_provider and pass in the api base from there | |
| api_base = ( | |
| optional_params.api_base | |
| or litellm.api_base | |
| or os.getenv("OPENAI_BASE_URL") | |
| or os.getenv("OPENAI_API_BASE") | |
| or "https://api.openai.com/v1" | |
| ) | |
| organization = ( | |
| optional_params.organization | |
| or litellm.organization | |
| or os.getenv("OPENAI_ORGANIZATION", None) | |
| or None # default - https://github.com/openai/openai-python/blob/284c1799070c723c6a553337134148a7ab088dd8/openai/util.py#L105 | |
| ) | |
| # set API KEY | |
| api_key = ( | |
| optional_params.api_key | |
| or litellm.api_key # for deepinfra/perplexity/anyscale we check in get_llm_provider and pass in the api key from there | |
| or litellm.openai_key | |
| or os.getenv("OPENAI_API_KEY") | |
| ) | |
| response = openai_files_instance.retrieve_file( | |
| file_id=file_id, | |
| _is_async=_is_async, | |
| api_base=api_base, | |
| api_key=api_key, | |
| timeout=timeout, | |
| max_retries=optional_params.max_retries, | |
| organization=organization, | |
| ) | |
| elif custom_llm_provider == "azure": | |
| api_base = optional_params.api_base or litellm.api_base or get_secret_str("AZURE_API_BASE") # type: ignore | |
| api_version = ( | |
| optional_params.api_version | |
| or litellm.api_version | |
| or get_secret_str("AZURE_API_VERSION") | |
| ) # type: ignore | |
| api_key = ( | |
| optional_params.api_key | |
| or litellm.api_key | |
| or litellm.azure_key | |
| or get_secret_str("AZURE_OPENAI_API_KEY") | |
| or get_secret_str("AZURE_API_KEY") | |
| ) # type: ignore | |
| extra_body = optional_params.get("extra_body", {}) | |
| if extra_body is not None: | |
| extra_body.pop("azure_ad_token", None) | |
| else: | |
| get_secret_str("AZURE_AD_TOKEN") # type: ignore | |
| response = azure_files_instance.retrieve_file( | |
| _is_async=_is_async, | |
| api_base=api_base, | |
| api_key=api_key, | |
| api_version=api_version, | |
| timeout=timeout, | |
| max_retries=optional_params.max_retries, | |
| file_id=file_id, | |
| ) | |
| else: | |
| raise litellm.exceptions.BadRequestError( | |
| message="LiteLLM doesn't support {} for 'file_retrieve'. Only 'openai' and 'azure' are supported.".format( | |
| custom_llm_provider | |
| ), | |
| model="n/a", | |
| llm_provider=custom_llm_provider, | |
| response=httpx.Response( | |
| status_code=400, | |
| content="Unsupported provider", | |
| request=httpx.Request(method="create_thread", url="https://github.com/BerriAI/litellm"), # type: ignore | |
| ), | |
| ) | |
| return cast(FileObject, response) | |
| except Exception as e: | |
| raise e | |
| # Delete file | |
| async def afile_delete( | |
| file_id: str, | |
| custom_llm_provider: Literal["openai", "azure"] = "openai", | |
| extra_headers: Optional[Dict[str, str]] = None, | |
| extra_body: Optional[Dict[str, str]] = None, | |
| **kwargs, | |
| ) -> Coroutine[Any, Any, FileObject]: | |
| """ | |
| Async: Delete file | |
| LiteLLM Equivalent of DELETE https://api.openai.com/v1/files | |
| """ | |
| try: | |
| loop = asyncio.get_event_loop() | |
| kwargs["is_async"] = True | |
| # Use a partial function to pass your keyword arguments | |
| func = partial( | |
| file_delete, | |
| file_id, | |
| custom_llm_provider, | |
| extra_headers, | |
| extra_body, | |
| **kwargs, | |
| ) | |
| # Add the context to the function | |
| ctx = contextvars.copy_context() | |
| func_with_context = partial(ctx.run, func) | |
| init_response = await loop.run_in_executor(None, func_with_context) | |
| if asyncio.iscoroutine(init_response): | |
| response = await init_response | |
| else: | |
| response = init_response # type: ignore | |
| return cast(FileDeleted, response) # type: ignore | |
| except Exception as e: | |
| raise e | |
| def file_delete( | |
| file_id: str, | |
| custom_llm_provider: Literal["openai", "azure"] = "openai", | |
| extra_headers: Optional[Dict[str, str]] = None, | |
| extra_body: Optional[Dict[str, str]] = None, | |
| **kwargs, | |
| ) -> FileDeleted: | |
| """ | |
| Delete file | |
| LiteLLM Equivalent of DELETE https://api.openai.com/v1/files | |
| """ | |
| try: | |
| optional_params = GenericLiteLLMParams(**kwargs) | |
| litellm_params_dict = get_litellm_params(**kwargs) | |
| ### TIMEOUT LOGIC ### | |
| timeout = optional_params.timeout or kwargs.get("request_timeout", 600) or 600 | |
| # set timeout for 10 minutes by default | |
| client = kwargs.get("client") | |
| if ( | |
| timeout is not None | |
| and isinstance(timeout, httpx.Timeout) | |
| and supports_httpx_timeout(custom_llm_provider) is False | |
| ): | |
| read_timeout = timeout.read or 600 | |
| timeout = read_timeout # default 10 min timeout | |
| elif timeout is not None and not isinstance(timeout, httpx.Timeout): | |
| timeout = float(timeout) # type: ignore | |
| elif timeout is None: | |
| timeout = 600.0 | |
| _is_async = kwargs.pop("is_async", False) is True | |
| if custom_llm_provider == "openai": | |
| # for deepinfra/perplexity/anyscale/groq we check in get_llm_provider and pass in the api base from there | |
| api_base = ( | |
| optional_params.api_base | |
| or litellm.api_base | |
| or os.getenv("OPENAI_BASE_URL") | |
| or os.getenv("OPENAI_API_BASE") | |
| or "https://api.openai.com/v1" | |
| ) | |
| organization = ( | |
| optional_params.organization | |
| or litellm.organization | |
| or os.getenv("OPENAI_ORGANIZATION", None) | |
| or None # default - https://github.com/openai/openai-python/blob/284c1799070c723c6a553337134148a7ab088dd8/openai/util.py#L105 | |
| ) | |
| # set API KEY | |
| api_key = ( | |
| optional_params.api_key | |
| or litellm.api_key # for deepinfra/perplexity/anyscale we check in get_llm_provider and pass in the api key from there | |
| or litellm.openai_key | |
| or os.getenv("OPENAI_API_KEY") | |
| ) | |
| response = openai_files_instance.delete_file( | |
| file_id=file_id, | |
| _is_async=_is_async, | |
| api_base=api_base, | |
| api_key=api_key, | |
| timeout=timeout, | |
| max_retries=optional_params.max_retries, | |
| organization=organization, | |
| ) | |
| elif custom_llm_provider == "azure": | |
| api_base = optional_params.api_base or litellm.api_base or get_secret_str("AZURE_API_BASE") # type: ignore | |
| api_version = ( | |
| optional_params.api_version | |
| or litellm.api_version | |
| or get_secret_str("AZURE_API_VERSION") | |
| ) # type: ignore | |
| api_key = ( | |
| optional_params.api_key | |
| or litellm.api_key | |
| or litellm.azure_key | |
| or get_secret_str("AZURE_OPENAI_API_KEY") | |
| or get_secret_str("AZURE_API_KEY") | |
| ) # type: ignore | |
| extra_body = optional_params.get("extra_body", {}) | |
| if extra_body is not None: | |
| extra_body.pop("azure_ad_token", None) | |
| else: | |
| get_secret_str("AZURE_AD_TOKEN") # type: ignore | |
| response = azure_files_instance.delete_file( | |
| _is_async=_is_async, | |
| api_base=api_base, | |
| api_key=api_key, | |
| api_version=api_version, | |
| timeout=timeout, | |
| max_retries=optional_params.max_retries, | |
| file_id=file_id, | |
| client=client, | |
| litellm_params=litellm_params_dict, | |
| ) | |
| else: | |
| raise litellm.exceptions.BadRequestError( | |
| message="LiteLLM doesn't support {} for 'create_batch'. Only 'openai' is supported.".format( | |
| custom_llm_provider | |
| ), | |
| model="n/a", | |
| llm_provider=custom_llm_provider, | |
| response=httpx.Response( | |
| status_code=400, | |
| content="Unsupported provider", | |
| request=httpx.Request(method="create_thread", url="https://github.com/BerriAI/litellm"), # type: ignore | |
| ), | |
| ) | |
| return cast(FileDeleted, response) | |
| except Exception as e: | |
| raise e | |
| # List files | |
| async def afile_list( | |
| custom_llm_provider: Literal["openai", "azure"] = "openai", | |
| purpose: Optional[str] = None, | |
| extra_headers: Optional[Dict[str, str]] = None, | |
| extra_body: Optional[Dict[str, str]] = None, | |
| **kwargs, | |
| ): | |
| """ | |
| Async: List files | |
| LiteLLM Equivalent of GET https://api.openai.com/v1/files | |
| """ | |
| try: | |
| loop = asyncio.get_event_loop() | |
| kwargs["is_async"] = True | |
| # Use a partial function to pass your keyword arguments | |
| func = partial( | |
| file_list, | |
| custom_llm_provider, | |
| purpose, | |
| extra_headers, | |
| extra_body, | |
| **kwargs, | |
| ) | |
| # Add the context to the function | |
| ctx = contextvars.copy_context() | |
| func_with_context = partial(ctx.run, func) | |
| init_response = await loop.run_in_executor(None, func_with_context) | |
| if asyncio.iscoroutine(init_response): | |
| response = await init_response | |
| else: | |
| response = init_response # type: ignore | |
| return response | |
| except Exception as e: | |
| raise e | |
| def file_list( | |
| custom_llm_provider: Literal["openai", "azure"] = "openai", | |
| purpose: Optional[str] = None, | |
| extra_headers: Optional[Dict[str, str]] = None, | |
| extra_body: Optional[Dict[str, str]] = None, | |
| **kwargs, | |
| ): | |
| """ | |
| List files | |
| LiteLLM Equivalent of GET https://api.openai.com/v1/files | |
| """ | |
| try: | |
| optional_params = GenericLiteLLMParams(**kwargs) | |
| ### TIMEOUT LOGIC ### | |
| timeout = optional_params.timeout or kwargs.get("request_timeout", 600) or 600 | |
| # set timeout for 10 minutes by default | |
| if ( | |
| timeout is not None | |
| and isinstance(timeout, httpx.Timeout) | |
| and supports_httpx_timeout(custom_llm_provider) is False | |
| ): | |
| read_timeout = timeout.read or 600 | |
| timeout = read_timeout # default 10 min timeout | |
| elif timeout is not None and not isinstance(timeout, httpx.Timeout): | |
| timeout = float(timeout) # type: ignore | |
| elif timeout is None: | |
| timeout = 600.0 | |
| _is_async = kwargs.pop("is_async", False) is True | |
| if custom_llm_provider == "openai": | |
| # for deepinfra/perplexity/anyscale/groq we check in get_llm_provider and pass in the api base from there | |
| api_base = ( | |
| optional_params.api_base | |
| or litellm.api_base | |
| or os.getenv("OPENAI_BASE_URL") | |
| or os.getenv("OPENAI_API_BASE") | |
| or "https://api.openai.com/v1" | |
| ) | |
| organization = ( | |
| optional_params.organization | |
| or litellm.organization | |
| or os.getenv("OPENAI_ORGANIZATION", None) | |
| or None # default - https://github.com/openai/openai-python/blob/284c1799070c723c6a553337134148a7ab088dd8/openai/util.py#L105 | |
| ) | |
| # set API KEY | |
| api_key = ( | |
| optional_params.api_key | |
| or litellm.api_key # for deepinfra/perplexity/anyscale we check in get_llm_provider and pass in the api key from there | |
| or litellm.openai_key | |
| or os.getenv("OPENAI_API_KEY") | |
| ) | |
| response = openai_files_instance.list_files( | |
| purpose=purpose, | |
| _is_async=_is_async, | |
| api_base=api_base, | |
| api_key=api_key, | |
| timeout=timeout, | |
| max_retries=optional_params.max_retries, | |
| organization=organization, | |
| ) | |
| elif custom_llm_provider == "azure": | |
| api_base = optional_params.api_base or litellm.api_base or get_secret_str("AZURE_API_BASE") # type: ignore | |
| api_version = ( | |
| optional_params.api_version | |
| or litellm.api_version | |
| or get_secret_str("AZURE_API_VERSION") | |
| ) # type: ignore | |
| api_key = ( | |
| optional_params.api_key | |
| or litellm.api_key | |
| or litellm.azure_key | |
| or get_secret_str("AZURE_OPENAI_API_KEY") | |
| or get_secret_str("AZURE_API_KEY") | |
| ) # type: ignore | |
| extra_body = optional_params.get("extra_body", {}) | |
| if extra_body is not None: | |
| extra_body.pop("azure_ad_token", None) | |
| else: | |
| get_secret_str("AZURE_AD_TOKEN") # type: ignore | |
| response = azure_files_instance.list_files( | |
| _is_async=_is_async, | |
| api_base=api_base, | |
| api_key=api_key, | |
| api_version=api_version, | |
| timeout=timeout, | |
| max_retries=optional_params.max_retries, | |
| purpose=purpose, | |
| ) | |
| else: | |
| raise litellm.exceptions.BadRequestError( | |
| message="LiteLLM doesn't support {} for 'file_list'. Only 'openai' and 'azure' are supported.".format( | |
| custom_llm_provider | |
| ), | |
| model="n/a", | |
| llm_provider=custom_llm_provider, | |
| response=httpx.Response( | |
| status_code=400, | |
| content="Unsupported provider", | |
| request=httpx.Request(method="file_list", url="https://github.com/BerriAI/litellm"), # type: ignore | |
| ), | |
| ) | |
| return response | |
| except Exception as e: | |
| raise e | |
| async def afile_content( | |
| file_id: str, | |
| custom_llm_provider: Literal["openai", "azure"] = "openai", | |
| extra_headers: Optional[Dict[str, str]] = None, | |
| extra_body: Optional[Dict[str, str]] = None, | |
| **kwargs, | |
| ) -> HttpxBinaryResponseContent: | |
| """ | |
| Async: Get file contents | |
| LiteLLM Equivalent of GET https://api.openai.com/v1/files | |
| """ | |
| try: | |
| loop = asyncio.get_event_loop() | |
| kwargs["afile_content"] = True | |
| # Use a partial function to pass your keyword arguments | |
| func = partial( | |
| file_content, | |
| file_id, | |
| custom_llm_provider, | |
| extra_headers, | |
| extra_body, | |
| **kwargs, | |
| ) | |
| # Add the context to the function | |
| ctx = contextvars.copy_context() | |
| func_with_context = partial(ctx.run, func) | |
| init_response = await loop.run_in_executor(None, func_with_context) | |
| if asyncio.iscoroutine(init_response): | |
| response = await init_response | |
| else: | |
| response = init_response # type: ignore | |
| return response | |
| except Exception as e: | |
| raise e | |
| def file_content( | |
| file_id: str, | |
| custom_llm_provider: Literal["openai", "azure"] = "openai", | |
| extra_headers: Optional[Dict[str, str]] = None, | |
| extra_body: Optional[Dict[str, str]] = None, | |
| **kwargs, | |
| ) -> Union[HttpxBinaryResponseContent, Coroutine[Any, Any, HttpxBinaryResponseContent]]: | |
| """ | |
| Returns the contents of the specified file. | |
| LiteLLM Equivalent of POST: POST https://api.openai.com/v1/files | |
| """ | |
| try: | |
| optional_params = GenericLiteLLMParams(**kwargs) | |
| litellm_params_dict = get_litellm_params(**kwargs) | |
| ### TIMEOUT LOGIC ### | |
| timeout = optional_params.timeout or kwargs.get("request_timeout", 600) or 600 | |
| client = kwargs.get("client") | |
| # set timeout for 10 minutes by default | |
| if ( | |
| timeout is not None | |
| and isinstance(timeout, httpx.Timeout) | |
| and supports_httpx_timeout(custom_llm_provider) is False | |
| ): | |
| read_timeout = timeout.read or 600 | |
| timeout = read_timeout # default 10 min timeout | |
| elif timeout is not None and not isinstance(timeout, httpx.Timeout): | |
| timeout = float(timeout) # type: ignore | |
| elif timeout is None: | |
| timeout = 600.0 | |
| _file_content_request = FileContentRequest( | |
| file_id=file_id, | |
| extra_headers=extra_headers, | |
| extra_body=extra_body, | |
| ) | |
| _is_async = kwargs.pop("afile_content", False) is True | |
| if custom_llm_provider == "openai": | |
| # for deepinfra/perplexity/anyscale/groq we check in get_llm_provider and pass in the api base from there | |
| api_base = ( | |
| optional_params.api_base | |
| or litellm.api_base | |
| or os.getenv("OPENAI_BASE_URL") | |
| or os.getenv("OPENAI_API_BASE") | |
| or "https://api.openai.com/v1" | |
| ) | |
| organization = ( | |
| optional_params.organization | |
| or litellm.organization | |
| or os.getenv("OPENAI_ORGANIZATION", None) | |
| or None # default - https://github.com/openai/openai-python/blob/284c1799070c723c6a553337134148a7ab088dd8/openai/util.py#L105 | |
| ) | |
| # set API KEY | |
| api_key = ( | |
| optional_params.api_key | |
| or litellm.api_key # for deepinfra/perplexity/anyscale we check in get_llm_provider and pass in the api key from there | |
| or litellm.openai_key | |
| or os.getenv("OPENAI_API_KEY") | |
| ) | |
| response = openai_files_instance.file_content( | |
| _is_async=_is_async, | |
| file_content_request=_file_content_request, | |
| api_base=api_base, | |
| api_key=api_key, | |
| timeout=timeout, | |
| max_retries=optional_params.max_retries, | |
| organization=organization, | |
| ) | |
| elif custom_llm_provider == "azure": | |
| api_base = optional_params.api_base or litellm.api_base or get_secret_str("AZURE_API_BASE") # type: ignore | |
| api_version = ( | |
| optional_params.api_version | |
| or litellm.api_version | |
| or get_secret_str("AZURE_API_VERSION") | |
| ) # type: ignore | |
| api_key = ( | |
| optional_params.api_key | |
| or litellm.api_key | |
| or litellm.azure_key | |
| or get_secret_str("AZURE_OPENAI_API_KEY") | |
| or get_secret_str("AZURE_API_KEY") | |
| ) # type: ignore | |
| extra_body = optional_params.get("extra_body", {}) | |
| if extra_body is not None: | |
| extra_body.pop("azure_ad_token", None) | |
| else: | |
| get_secret_str("AZURE_AD_TOKEN") # type: ignore | |
| response = azure_files_instance.file_content( | |
| _is_async=_is_async, | |
| api_base=api_base, | |
| api_key=api_key, | |
| api_version=api_version, | |
| timeout=timeout, | |
| max_retries=optional_params.max_retries, | |
| file_content_request=_file_content_request, | |
| client=client, | |
| litellm_params=litellm_params_dict, | |
| ) | |
| else: | |
| raise litellm.exceptions.BadRequestError( | |
| message="LiteLLM doesn't support {} for 'custom_llm_provider'. Supported providers are 'openai', 'azure', 'vertex_ai'.".format( | |
| custom_llm_provider | |
| ), | |
| model="n/a", | |
| llm_provider=custom_llm_provider, | |
| response=httpx.Response( | |
| status_code=400, | |
| content="Unsupported provider", | |
| request=httpx.Request(method="create_thread", url="https://github.com/BerriAI/litellm"), # type: ignore | |
| ), | |
| ) | |
| return response | |
| except Exception as e: | |
| raise e | |