Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,331 +1,185 @@
|
|
| 1 |
-
import warnings
|
| 2 |
-
import numpy as np
|
| 3 |
-
import pandas as pd
|
| 4 |
import os
|
| 5 |
import json
|
| 6 |
import random
|
| 7 |
import gradio as gr
|
| 8 |
import torch
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
import nltk
|
| 13 |
from nltk.sentiment import SentimentIntensityAnalyzer
|
| 14 |
-
from nltk.tokenize import word_tokenize
|
| 15 |
-
from nltk.tag import pos_tag
|
| 16 |
-
from nltk.chunk import ne_chunk
|
| 17 |
from textblob import TextBlob
|
| 18 |
-
import
|
| 19 |
-
|
|
|
|
| 20 |
|
| 21 |
-
warnings.filterwarnings('ignore', category=FutureWarning, module='huggingface_hub.file_download')
|
| 22 |
# Download necessary NLTK data
|
| 23 |
nltk.download('vader_lexicon', quiet=True)
|
| 24 |
-
nltk.download('punkt', quiet=True)
|
| 25 |
-
nltk.download('averaged_perceptron_tagger', quiet=True)
|
| 26 |
-
nltk.download('maxent_ne_chunker', quiet=True)
|
| 27 |
-
nltk.download('words', quiet=True)
|
| 28 |
-
|
| 29 |
-
# Initialize Example Dataset (For Emotion Prediction)
|
| 30 |
-
data = {
|
| 31 |
-
'context': [
|
| 32 |
-
'I am happy', 'I am sad', 'I am angry', 'I am excited', 'I am calm',
|
| 33 |
-
'I am feeling joyful', 'I am grieving', 'I am feeling peaceful', 'I am frustrated',
|
| 34 |
-
'I am determined', 'I feel resentment', 'I am feeling glorious', 'I am motivated',
|
| 35 |
-
'I am surprised', 'I am fearful', 'I am trusting', 'I feel disgust', 'I am optimistic',
|
| 36 |
-
'I am pessimistic', 'I feel bored', 'I am envious'
|
| 37 |
-
],
|
| 38 |
-
'emotion': [
|
| 39 |
-
'joy', 'sadness', 'anger', 'joy', 'calmness', 'joy', 'grief', 'calmness', 'anger',
|
| 40 |
-
'determination', 'resentment', 'glory', 'motivation', 'surprise', 'fear', 'trust',
|
| 41 |
-
'disgust', 'optimism', 'pessimism', 'boredom', 'envy'
|
| 42 |
-
]
|
| 43 |
-
}
|
| 44 |
-
df = pd.DataFrame(data)
|
| 45 |
|
| 46 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
try:
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
response_model_name = "microsoft/DialoGPT-medium"
|
| 63 |
-
response_tokenizer = AutoTokenizer.from_pretrained(response_model_name)
|
| 64 |
-
response_model = AutoModelForCausalLM.from_pretrained(response_model_name)
|
| 65 |
-
|
| 66 |
-
# Set the pad token
|
| 67 |
-
response_tokenizer.pad_token = response_tokenizer.eos_token
|
| 68 |
-
|
| 69 |
-
# Enhanced Emotional States
|
| 70 |
-
emotions = {
|
| 71 |
-
'joy': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
|
| 72 |
-
'sadness': {'percentage': 10, 'motivation': 'negative', 'intensity': 0},
|
| 73 |
-
'anger': {'percentage': 10, 'motivation': 'traumatic or strong', 'intensity': 0},
|
| 74 |
-
'fear': {'percentage': 10, 'motivation': 'defensive', 'intensity': 0},
|
| 75 |
-
'love': {'percentage': 10, 'motivation': 'affectionate', 'intensity': 0},
|
| 76 |
-
'surprise': {'percentage': 10, 'motivation': 'unexpected', 'intensity': 0},
|
| 77 |
-
'neutral': {'percentage': 40, 'motivation': 'balanced', 'intensity': 0},
|
| 78 |
-
}
|
| 79 |
-
|
| 80 |
-
total_percentage = 100
|
| 81 |
-
emotion_history_file = 'emotion_history.json'
|
| 82 |
-
global conversation_history
|
| 83 |
-
conversation_history = []
|
| 84 |
-
max_history_length = 30
|
| 85 |
-
|
| 86 |
-
def load_historical_data(file_path=emotion_history_file):
|
| 87 |
-
if os.path.exists(file_path):
|
| 88 |
-
with open(file_path, 'r') as file:
|
| 89 |
-
return json.load(file)
|
| 90 |
-
return []
|
| 91 |
-
|
| 92 |
-
def save_historical_data(historical_data, file_path=emotion_history_file):
|
| 93 |
-
with open(file_path, 'w') as file:
|
| 94 |
-
json.dump(historical_data, file)
|
| 95 |
-
|
| 96 |
-
emotion_history = load_historical_data()
|
| 97 |
-
|
| 98 |
-
def update_emotion(emotion, percentage, intensity):
|
| 99 |
-
emotions[emotion]['percentage'] += percentage
|
| 100 |
-
emotions[emotion]['intensity'] = intensity
|
| 101 |
-
|
| 102 |
-
# Normalize percentages
|
| 103 |
-
total = sum(e['percentage'] for e in emotions.values())
|
| 104 |
-
for e in emotions:
|
| 105 |
-
emotions[e]['percentage'] = (emotions[e]['percentage'] / total) * 100
|
| 106 |
-
|
| 107 |
-
def normalize_context(context):
|
| 108 |
-
return context.lower().strip()
|
| 109 |
-
|
| 110 |
-
# Create FitnessMulti and Individual outside of evolve_emotions
|
| 111 |
-
creator.create("FitnessMulti", base.Fitness, weights=(-1.0, -0.5, -0.2))
|
| 112 |
-
creator.create("Individual", list, fitness=creator.FitnessMulti)
|
| 113 |
-
|
| 114 |
-
def evaluate(individual):
|
| 115 |
-
emotion_values = individual[:len(emotions)]
|
| 116 |
-
intensities = individual[len(emotions):]
|
| 117 |
-
|
| 118 |
-
total_diff = abs(100 - sum(emotion_values))
|
| 119 |
-
intensity_range = max(intensities) - min(intensities)
|
| 120 |
-
emotion_balance = max(emotion_values) - min(emotion_values)
|
| 121 |
-
|
| 122 |
-
return total_diff, intensity_range, emotion_balance
|
| 123 |
-
|
| 124 |
-
def evolve_emotions():
|
| 125 |
-
toolbox = base.Toolbox()
|
| 126 |
-
toolbox.register("attr_float", random.uniform, 0, 100)
|
| 127 |
-
toolbox.register("attr_intensity", random.uniform, 0, 10)
|
| 128 |
-
toolbox.register("individual", tools.initCycle, creator.Individual,
|
| 129 |
-
(toolbox.attr_float,) * len(emotions) +
|
| 130 |
-
(toolbox.attr_intensity,) * len(emotions), n=1)
|
| 131 |
-
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
|
| 132 |
-
toolbox.register("mate", tools.cxTwoPoint)
|
| 133 |
-
toolbox.register("mutate", tools.mutGaussian, mu=0, sigma=1, indpb=0.2)
|
| 134 |
-
toolbox.register("select", tools.selNSGA2)
|
| 135 |
-
toolbox.register("evaluate", evaluate)
|
| 136 |
-
|
| 137 |
-
population = toolbox.population(n=100)
|
| 138 |
-
algorithms.eaMuPlusLambda(population, toolbox, mu=50, lambda_=100, cxpb=0.7, mutpb=0.2, ngen=50,
|
| 139 |
-
stats=None, halloffame=None, verbose=False)
|
| 140 |
-
|
| 141 |
-
best_individual = tools.selBest(population, k=1)[0]
|
| 142 |
-
emotion_values = best_individual[:len(emotions)]
|
| 143 |
-
intensities = best_individual[len(emotions):]
|
| 144 |
-
|
| 145 |
-
for i, (emotion, data) in enumerate(emotions.items()):
|
| 146 |
-
data['percentage'] = emotion_values[i]
|
| 147 |
-
data['intensity'] = intensities[i]
|
| 148 |
-
|
| 149 |
-
# Normalize percentages
|
| 150 |
-
total = sum(e['percentage'] for e in emotions.values())
|
| 151 |
-
for e in emotions:
|
| 152 |
-
emotions[e]['percentage'] = (emotions[e]['percentage'] / total) * 100
|
| 153 |
-
def update_emotion_history(emotion, percentage, intensity, context):
|
| 154 |
-
entry = {
|
| 155 |
-
'emotion': emotion,
|
| 156 |
-
'percentage': percentage,
|
| 157 |
-
'intensity': intensity,
|
| 158 |
-
'context': context,
|
| 159 |
-
'timestamp': pd.Timestamp.now().isoformat()
|
| 160 |
-
}
|
| 161 |
-
emotion_history.append(entry)
|
| 162 |
-
save_historical_data(emotion_history)
|
| 163 |
-
|
| 164 |
-
# Adding 443 features
|
| 165 |
-
additional_features = {}
|
| 166 |
-
for i in range(443):
|
| 167 |
-
additional_features[f'feature_{i+1}'] = 0
|
| 168 |
-
|
| 169 |
-
def feature_transformations():
|
| 170 |
-
global additional_features
|
| 171 |
-
for feature in additional_features:
|
| 172 |
-
additional_features[feature] += random.uniform(-1, 1)
|
| 173 |
-
|
| 174 |
-
def generate_response(input_text, ai_emotion):
|
| 175 |
-
global conversation_history
|
| 176 |
-
# Prepare a prompt based on the current emotion and input
|
| 177 |
-
prompt = f"You are an AI assistant currently feeling {ai_emotion}. Your response should reflect this emotion. Human: {input_text}\nAI:"
|
| 178 |
-
|
| 179 |
-
# Add conversation history to the prompt
|
| 180 |
-
for entry in conversation_history[-5:]: # Use last 5 entries for context
|
| 181 |
-
prompt = f"Human: {entry['user']}\nAI: {entry['response']}\n" + prompt
|
| 182 |
-
|
| 183 |
-
inputs = response_tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=1024)
|
| 184 |
-
|
| 185 |
-
# Adjust generation parameters based on emotion
|
| 186 |
-
temperature = 0.7
|
| 187 |
-
if ai_emotion == 'anger':
|
| 188 |
-
temperature = 0.9 # More randomness for angry responses
|
| 189 |
-
elif ai_emotion == 'joy':
|
| 190 |
-
temperature = 0.5 # More focused responses for joyful state
|
| 191 |
-
|
| 192 |
-
with torch.no_grad():
|
| 193 |
-
response_ids = response_model.generate(
|
| 194 |
-
inputs.input_ids,
|
| 195 |
-
attention_mask=inputs.attention_mask,
|
| 196 |
-
max_length=1024,
|
| 197 |
-
num_return_sequences=1,
|
| 198 |
-
no_repeat_ngram_size=2,
|
| 199 |
-
do_sample=True,
|
| 200 |
-
top_k=50,
|
| 201 |
-
top_p=0.95,
|
| 202 |
-
temperature=temperature,
|
| 203 |
-
pad_token_id=response_tokenizer.eos_token_id
|
| 204 |
)
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
def sentiment_analysis(text):
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 232 |
|
| 233 |
-
def
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
'
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 241 |
}
|
|
|
|
| 242 |
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
sns.barplot(x='Emotion', y='Percentage', data=emotions_df)
|
| 249 |
-
plt.title('Current Emotional State')
|
| 250 |
-
plt.xticks(rotation=45, ha='right')
|
| 251 |
-
plt.tight_layout()
|
| 252 |
-
plt.savefig('emotional_state.png')
|
| 253 |
-
plt.close()
|
| 254 |
|
| 255 |
-
|
| 256 |
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
text_complexity = analyze_text_complexity(input_text)
|
| 265 |
-
|
| 266 |
-
# Update AI's emotional state based on input
|
| 267 |
-
update_emotion(predicted_emotion, random.uniform(5, 15), random.uniform(0, 10))
|
| 268 |
-
|
| 269 |
-
# Determine AI's current dominant emotion
|
| 270 |
-
ai_emotion = max(emotions, key=lambda e: emotions[e]['percentage'])
|
| 271 |
-
|
| 272 |
-
# Generate response based on AI's emotion
|
| 273 |
-
response = generate_response(input_text, ai_emotion)
|
| 274 |
-
|
| 275 |
-
# Update conversation history
|
| 276 |
-
conversation_history.append({
|
| 277 |
-
'user': input_text,
|
| 278 |
-
'response': response
|
| 279 |
-
})
|
| 280 |
-
|
| 281 |
-
# Trim conversation history if it exceeds the maximum length
|
| 282 |
-
if len(conversation_history) > max_history_length:
|
| 283 |
-
conversation_history = conversation_history[-max_history_length:]
|
| 284 |
-
|
| 285 |
-
update_emotion_history(ai_emotion, emotions[ai_emotion]['percentage'], emotions[ai_emotion]['intensity'], input_text)
|
| 286 |
-
feature_transformations()
|
| 287 |
-
|
| 288 |
-
emotion_visualization = visualize_emotions()
|
| 289 |
-
|
| 290 |
-
analysis_result = {
|
| 291 |
-
'predicted_user_emotion': predicted_emotion,
|
| 292 |
-
'ai_emotion': ai_emotion,
|
| 293 |
-
'sentiment_scores': sentiment_scores,
|
| 294 |
-
'entities': entities,
|
| 295 |
-
'text_complexity': text_complexity,
|
| 296 |
-
'current_emotional_state': emotions,
|
| 297 |
-
'response': response,
|
| 298 |
-
'emotion_visualization': emotion_visualization
|
| 299 |
-
}
|
| 300 |
-
|
| 301 |
-
return analysis_result
|
| 302 |
-
except Exception as e:
|
| 303 |
-
print(f"An error occurred: {str(e)}")
|
| 304 |
-
return "I apologize, but I encountered an error while processing your input. Please try again."
|
| 305 |
|
| 306 |
def gradio_interface(input_text):
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
# Create Gradio interface
|
| 322 |
iface = gr.Interface(
|
| 323 |
fn=gradio_interface,
|
| 324 |
inputs="text",
|
| 325 |
outputs=["text", gr.Image(type="filepath")],
|
| 326 |
-
title="Enhanced Emotional
|
| 327 |
-
description="Enter text to
|
| 328 |
)
|
| 329 |
|
| 330 |
if __name__ == "__main__":
|
| 331 |
iface.launch(share=True)
|
|
|
|
|
|
| 1 |
+
import warnings
|
|
|
|
|
|
|
| 2 |
import os
|
| 3 |
import json
|
| 4 |
import random
|
| 5 |
import gradio as gr
|
| 6 |
import torch
|
| 7 |
+
import matplotlib.pyplot as plt
|
| 8 |
+
import seaborn as sns
|
| 9 |
+
import pandas as pd
|
| 10 |
import nltk
|
| 11 |
from nltk.sentiment import SentimentIntensityAnalyzer
|
|
|
|
|
|
|
|
|
|
| 12 |
from textblob import TextBlob
|
| 13 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoModelForCausalLM
|
| 14 |
+
|
| 15 |
+
warnings.filterwarnings('ignore', category=FutureWarning)
|
| 16 |
|
|
|
|
| 17 |
# Download necessary NLTK data
|
| 18 |
nltk.download('vader_lexicon', quiet=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
+
# ---------------------------
|
| 21 |
+
# Backend Support for GGUF Models
|
| 22 |
+
# ---------------------------
|
| 23 |
+
# Attempt to import a llama_cpp binding if available.
|
| 24 |
+
# Otherwise, fallback to the Hugging Face transformers interface.
|
| 25 |
try:
|
| 26 |
+
# Hypothetical llama_cpp Python binding for GGUF support
|
| 27 |
+
from llama_cpp import Llama
|
| 28 |
+
BACKEND = "llama_cpp"
|
| 29 |
+
except ImportError:
|
| 30 |
+
BACKEND = "transformers"
|
| 31 |
+
|
| 32 |
+
# ---------------------------
|
| 33 |
+
# Emotional Analysis Module
|
| 34 |
+
# ---------------------------
|
| 35 |
+
class EmotionalAnalyzer:
|
| 36 |
+
def __init__(self):
|
| 37 |
+
# Load a pre-trained emotion classifier model and tokenizer
|
| 38 |
+
self.emotion_model = AutoModelForSequenceClassification.from_pretrained(
|
| 39 |
+
"bhadresh-savani/distilbert-base-uncased-emotion"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
)
|
| 41 |
+
self.emotion_tokenizer = AutoTokenizer.from_pretrained(
|
| 42 |
+
"bhadresh-savani/distilbert-base-uncased-emotion"
|
| 43 |
+
)
|
| 44 |
+
# Define labels according to the model card
|
| 45 |
+
self.emotion_labels = ["sadness", "joy", "love", "anger", "fear", "surprise"]
|
| 46 |
+
self.sia = SentimentIntensityAnalyzer()
|
| 47 |
+
|
| 48 |
+
def predict_emotion(self, text):
|
| 49 |
+
inputs = self.emotion_tokenizer(text, return_tensors="pt", truncation=True, max_length=512)
|
| 50 |
+
with torch.no_grad():
|
| 51 |
+
outputs = self.emotion_model(**inputs)
|
| 52 |
+
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
| 53 |
+
predicted_idx = torch.argmax(probabilities, dim=-1).item()
|
| 54 |
+
return self.emotion_labels[predicted_idx]
|
| 55 |
+
|
| 56 |
+
def sentiment_analysis(self, text):
|
| 57 |
+
return self.sia.polarity_scores(text)
|
| 58 |
+
|
| 59 |
+
def detailed_emotional_analysis(self, text):
|
| 60 |
+
"""Combine VADER and TextBlob analysis for richer emotional insight."""
|
| 61 |
+
vader_scores = self.sentiment_analysis(text)
|
| 62 |
+
blob = TextBlob(text)
|
| 63 |
+
textblob_analysis = {
|
| 64 |
+
'polarity': blob.sentiment.polarity,
|
| 65 |
+
'subjectivity': blob.sentiment.subjectivity,
|
| 66 |
+
'word_count': len(blob.words),
|
| 67 |
+
'sentence_count': len(blob.sentences)
|
| 68 |
+
}
|
| 69 |
+
predicted_emotion = self.predict_emotion(text)
|
| 70 |
+
return {
|
| 71 |
+
'predicted_emotion': predicted_emotion,
|
| 72 |
+
'vader': vader_scores,
|
| 73 |
+
'textblob': textblob_analysis
|
| 74 |
+
}
|
| 75 |
|
| 76 |
+
def visualize_emotions(self, emotions_dict):
|
| 77 |
+
"""Plot a bar chart of the current emotional state."""
|
| 78 |
+
emotions_df = pd.DataFrame(list(emotions_dict.items()), columns=['Emotion', 'Percentage'])
|
| 79 |
+
plt.figure(figsize=(8, 4))
|
| 80 |
+
sns.barplot(x='Emotion', y='Percentage', data=emotions_df)
|
| 81 |
+
plt.title('Current Emotional State')
|
| 82 |
+
plt.tight_layout()
|
| 83 |
+
image_path = 'emotional_state.png'
|
| 84 |
+
plt.savefig(image_path)
|
| 85 |
+
plt.close()
|
| 86 |
+
return image_path
|
| 87 |
+
|
| 88 |
+
# ---------------------------
|
| 89 |
+
# LLM Response Generator Module
|
| 90 |
+
# ---------------------------
|
| 91 |
+
class LLMResponder:
|
| 92 |
+
def __init__(self, model_name="SicariusSicariiStuff/Impish_LLAMA_3B_GGUF"):
|
| 93 |
+
self.model_name = model_name
|
| 94 |
+
if BACKEND == "llama_cpp":
|
| 95 |
+
# Initialize using llama_cpp backend (adjust parameters as needed)
|
| 96 |
+
self.llm = Llama(model_path="path/to/gguf/file.gguf", n_ctx=1024)
|
| 97 |
+
self.backend = "llama_cpp"
|
| 98 |
+
else:
|
| 99 |
+
# Load using Hugging Face transformers interface
|
| 100 |
+
self.llm_tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 101 |
+
self.llm_model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 102 |
+
self.backend = "transformers"
|
| 103 |
+
|
| 104 |
+
def generate_response(self, prompt):
|
| 105 |
+
if self.backend == "llama_cpp":
|
| 106 |
+
# Use llama_cpp inference (example API call, adjust as needed)
|
| 107 |
+
result = self.llm(prompt=prompt, max_tokens=256, temperature=0.95, top_p=0.95)
|
| 108 |
+
response = result.get("response", "")
|
| 109 |
+
else:
|
| 110 |
+
inputs = self.llm_tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1024)
|
| 111 |
+
with torch.no_grad():
|
| 112 |
+
output_ids = self.llm_model.generate(
|
| 113 |
+
inputs.input_ids,
|
| 114 |
+
max_length=1024,
|
| 115 |
+
do_sample=True,
|
| 116 |
+
top_p=0.95,
|
| 117 |
+
top_k=50,
|
| 118 |
+
pad_token_id=self.llm_tokenizer.eos_token_id
|
| 119 |
+
)
|
| 120 |
+
response = self.llm_tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 121 |
+
return response
|
| 122 |
+
|
| 123 |
+
# ---------------------------
|
| 124 |
+
# Main Interactive Interface Function
|
| 125 |
+
# ---------------------------
|
| 126 |
+
def interactive_interface(input_text):
|
| 127 |
+
# Initialize modules
|
| 128 |
+
emotion_analyzer = EmotionalAnalyzer()
|
| 129 |
+
llm_responder = LLMResponder()
|
| 130 |
+
|
| 131 |
+
# Perform detailed emotional analysis
|
| 132 |
+
emotional_data = emotion_analyzer.detailed_emotional_analysis(input_text)
|
| 133 |
+
# For demonstration, we simulate a dynamic emotional state dictionary update.
|
| 134 |
+
# In a real-world scenario, this could be updated based on conversation history.
|
| 135 |
+
current_emotions = {
|
| 136 |
+
'joy': random.randint(10, 30),
|
| 137 |
+
'sadness': random.randint(5, 20),
|
| 138 |
+
'anger': random.randint(10, 25),
|
| 139 |
+
'fear': random.randint(5, 15),
|
| 140 |
+
'love': random.randint(10, 30),
|
| 141 |
+
'surprise': random.randint(5, 20)
|
| 142 |
}
|
| 143 |
+
emotion_image = emotion_analyzer.visualize_emotions(current_emotions)
|
| 144 |
|
| 145 |
+
# Create a prompt that combines the input and the detected emotion
|
| 146 |
+
prompt = (f"Input: {input_text}\n"
|
| 147 |
+
f"Detected Emotion: {emotional_data['predicted_emotion']}\n"
|
| 148 |
+
f"VADER Scores: {emotional_data['vader']}\n"
|
| 149 |
+
"Provide a thoughtful, emotionally aware response that reflects the above data:")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
|
| 151 |
+
llm_response = llm_responder.generate_response(prompt)
|
| 152 |
|
| 153 |
+
# Organize the result into a dictionary
|
| 154 |
+
result = {
|
| 155 |
+
'detailed_emotional_analysis': emotional_data,
|
| 156 |
+
'llm_response': llm_response,
|
| 157 |
+
'emotion_visualization': emotion_image
|
| 158 |
+
}
|
| 159 |
+
return result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
|
| 161 |
def gradio_interface(input_text):
|
| 162 |
+
result = interactive_interface(input_text)
|
| 163 |
+
output_text = (
|
| 164 |
+
f"Detailed Emotional Analysis:\n"
|
| 165 |
+
f" - Predicted Emotion: {result['detailed_emotional_analysis']['predicted_emotion']}\n"
|
| 166 |
+
f" - VADER: {result['detailed_emotional_analysis']['vader']}\n"
|
| 167 |
+
f" - TextBlob: {result['detailed_emotional_analysis']['textblob']}\n\n"
|
| 168 |
+
f"LLM Response:\n{result['llm_response']}"
|
| 169 |
+
)
|
| 170 |
+
return output_text, result['emotion_visualization']
|
| 171 |
+
|
| 172 |
+
# ---------------------------
|
| 173 |
+
# Create Gradio Interface
|
| 174 |
+
# ---------------------------
|
|
|
|
|
|
|
| 175 |
iface = gr.Interface(
|
| 176 |
fn=gradio_interface,
|
| 177 |
inputs="text",
|
| 178 |
outputs=["text", gr.Image(type="filepath")],
|
| 179 |
+
title="Enhanced Emotional Analysis with GGUF LLM Support",
|
| 180 |
+
description="Enter text to perform detailed emotional analysis and generate an emotionally aware response using the Impish_LLAMA_3B_GGUF model."
|
| 181 |
)
|
| 182 |
|
| 183 |
if __name__ == "__main__":
|
| 184 |
iface.launch(share=True)
|
| 185 |
+
|