Document-QA-bot / app.py
Sarath0x8f's picture
Update app.py
04bd9f6 verified
from datetime import datetime
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_parse import LlamaParse
from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI
import os
from dotenv import load_dotenv
import gradio as gr
import markdowm as md
import base64
# Load environment variables
load_dotenv()
llm_models = [
"mistralai/Mixtral-8x7B-Instruct-v0.1",
"meta-llama/Meta-Llama-3-8B-Instruct",
"mistralai/Mistral-7B-Instruct-v0.2",
"tiiuae/falcon-7b-instruct",
]
embed_models = [
"BAAI/bge-small-en-v1.5",
"NeuML/pubmedbert-base-embeddings",
"BAAI/llm-embedder",
"BAAI/bge-large-en"
]
# Global variable for selected model
selected_llm_model_name = llm_models[0]
selected_embed_model_name = embed_models[0]
vector_index = None
# Initialize the parser
parser = LlamaParse(api_key=os.getenv("LLAMA_INDEX_API"), result_type='markdown')
file_extractor = {
'.pdf': parser,
'.docx': parser,
'.doc': parser,
'.txt': parser,
'.csv': parser,
'.xlsx': parser,
'.pptx': parser,
'.html': parser,
'.jpg': parser,
'.jpeg': parser,
'.png': parser,
'.webp': parser,
'.svg': parser,
}
def load_files(file_path: str, embed_model_name: str):
try:
global vector_index
document = SimpleDirectoryReader(input_files=[file_path], file_extractor=file_extractor).load_data()
embed_model = HuggingFaceEmbedding(model_name=embed_model_name)
vector_index = VectorStoreIndex.from_documents(document, embed_model=embed_model)
print(f"Parsing done for {file_path}")
filename = os.path.basename(file_path)
return f"Ready to give response on {filename}"
except Exception as e:
return f"An error occurred: {e}"
def set_llm_model(selected_model):
global selected_llm_model_name
selected_llm_model_name = selected_model
return f"Model set to: {selected_model}"
def respond(message, history):
try:
llm = HuggingFaceInferenceAPI(
model_name=selected_llm_model_name,
contextWindow=8192,
maxTokens=1024,
temperature=0.3,
topP=0.9,
frequencyPenalty=0.5,
presencePenalty=0.5,
token=os.getenv("TOKEN")
)
if vector_index is not None:
query_engine = vector_index.as_query_engine(llm=llm)
bot_message = query_engine.query(message)
print(f"\n{datetime.now()}:{selected_llm_model_name}:: {message} --> {str(bot_message)}\n")
return f"{selected_llm_model_name}:\n{str(bot_message)}"
else:
return "Please upload a file."
except Exception as e:
return f"An error occurred: {e}"
def encode_image(image_path):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
github_logo_encoded = encode_image("Images/github-logo.png")
linkedin_logo_encoded = encode_image("Images/linkedin-logo.png")
website_logo_encoded = encode_image("Images/ai-logo.png")
with gr.Blocks(theme=gr.themes.Soft(font=[gr.themes.GoogleFont("Roboto Mono")]), css='footer {visibility: hidden}') as demo:
gr.Markdown("# DocBot")
with gr.Tabs():
with gr.TabItem("Intro"):
gr.Markdown(md.description)
with gr.TabItem("DocBot"):
with gr.Accordion("=== IMPORTANT: READ ME FIRST ===", open=False):
guid = gr.Markdown(md.guide)
with gr.Row():
with gr.Column(scale=1):
file_input = gr.File(file_count="single", type='filepath', label="Step-1: Upload document")
embed_model_dropdown = gr.Dropdown(embed_models, label="Step-2: Select Embedding", interactive=True)
with gr.Row():
btn = gr.Button("Submit", variant='primary')
clear = gr.ClearButton()
output = gr.Text(label='Vector Index')
llm_model_dropdown = gr.Dropdown(llm_models, label="Step-3: Select LLM", interactive=True)
with gr.Column(scale=3):
gr.ChatInterface(
fn=respond,
chatbot=gr.Chatbot(height=500),
theme="soft",
textbox=gr.Textbox(placeholder="Step-4: Ask me questions on the uploaded document!", container=False)
)
gr.HTML(md.footer.format(github_logo_encoded, linkedin_logo_encoded, website_logo_encoded))
llm_model_dropdown.change(fn=set_llm_model, inputs=llm_model_dropdown, outputs=[gr.Text(label="Model selected")])
btn.click(fn=load_files, inputs=[file_input, embed_model_dropdown], outputs=output)
clear.click(lambda: [None] * 3, outputs=[file_input, embed_model_dropdown, output])
if __name__ == "__main__":
demo.launch(share=True)