SakibRumu
Update app.py
945dab5 verified
raw
history blame
6.32 kB
import gradio as gr
import cv2
import numpy as np
from ultralytics import YOLO
import pandas as pd
import pickle
import random
import torch.serialization
# Load the Random Forest model directly from the Space repository
try:
with open("model.pkl", "rb") as f:
rf_model = pickle.load(f)
except Exception as e:
raise Exception(f"Failed to load Random Forest model: {str(e)}")
# Load the YOLO model with safe globals directly from the Space repository
try:
from ultralytics.nn.tasks import DetectionModel
import torch.nn as nn
torch.serialization.add_safe_globals([DetectionModel, nn.Sequential])
yolo_model = YOLO("best.pt")
except Exception as e:
raise Exception(f"Failed to load YOLO model: {str(e)}")
# Simulated sensor data (from simulated_sensors.py)
def simulate_sensor_data(scenario="Safe"):
if scenario == "Safe":
data = {
"temperature": random.uniform(20, 30),
"humidity": random.uniform(30, 50),
"mq2_smoke": random.uniform(0, 100),
"mq135_gas": random.uniform(0, 100),
"flame_detected": False
}
elif scenario == "Gas Leak":
data = {
"temperature": random.uniform(20, 30),
"humidity": random.uniform(30, 50),
"mq2_smoke": random.uniform(100, 300),
"mq135_gas": random.uniform(600, 1000),
"flame_detected": False
}
elif scenario == "Fire Detected":
data = {
"temperature": random.uniform(40, 50),
"humidity": random.uniform(30, 50),
"mq2_smoke": random.uniform(300, 600),
"mq135_gas": random.uniform(100, 300),
"flame_detected": True
}
elif scenario == "Warning":
data = {
"temperature": random.uniform(30, 40),
"humidity": random.uniform(50, 70),
"mq2_smoke": random.uniform(200, 400),
"mq135_gas": random.uniform(300, 500),
"flame_detected": False
}
elif scenario == "Evacuate Immediately":
data = {
"temperature": random.uniform(45, 50),
"humidity": random.uniform(30, 50),
"mq2_smoke": random.uniform(600, 1000),
"mq135_gas": random.uniform(400, 600),
"flame_detected": True
}
else:
data = {
"temperature": 0,
"humidity": 0,
"mq2_smoke": 0,
"mq135_gas": 0,
"flame_detected": False
}
return data
# YOLO inference function
def detect_fire_smoke_from_image(image):
if image is None:
return {"cv_flame_score": 0.0, "cv_smoke_score": 0.0, "person_detected": 0}, image
results = yolo_model(image)
flame_score = 0.0
smoke_score = 0.0
person_detected = 0
for result in results:
for box in result.boxes:
label = result.names[int(box.cls)]
conf = float(box.conf)
if "fire" in label.lower():
flame_score = max(flame_score, conf)
elif "smoke" in label.lower():
smoke_score = max(smoke_score, conf)
elif "person" in label.lower():
person_detected = 1
x1, y1, x2, y2 = map(int, box.xyxy[0])
cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2)
cv2.putText(image, f"{label} {conf:.2f}", (x1, y1 - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
return {
"cv_flame_score": round(flame_score, 3),
"cv_smoke_score": round(smoke_score, 3),
"person_detected": person_detected
}, image
# Combined prediction function
def predict_system(scenario, image=None):
# Simulate sensor data
sensor_data = simulate_sensor_data(scenario)
# Perform YOLO inference if an image is provided
if image is not None:
vision_data, annotated_image = detect_fire_smoke_from_image(image)
else:
vision_data = {"cv_flame_score": 0.0, "cv_smoke_score": 0.0, "person_detected": 0}
annotated_image = np.zeros((480, 640, 3), dtype=np.uint8)
cv2.putText(annotated_image, "No Image Uploaded", (50, 240),
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2)
# Combine sensor and vision data
combined_data = {**sensor_data, **vision_data}
# Prepare features for Random Forest model
features = pd.DataFrame([[
combined_data["temperature"],
combined_data["humidity"],
combined_data["mq2_smoke"],
combined_data["mq135_gas"],
1 if combined_data["flame_detected"] else 0,
combined_data["cv_flame_score"],
combined_data["cv_smoke_score"],
1 if combined_data["person_detected"] else 0
]], columns=[
"temperature", "humidity", "mq2_smoke", "mq135_gas",
"flame_detected", "cv_flame_score", "cv_smoke_score", "person_detected"
])
# Predict threat level
prediction = rf_model.predict(features)[0]
# Format the output
output = f"""
**Threat Level:** {prediction}
**Sensor Data:**
- Temperature: {combined_data["temperature"]:.2f} °C
- Humidity: {combined_data["humidity"]:.2f} %
- MQ2 Smoke: {combined_data["mq2_smoke"]:.2f} ppm
- MQ135 Gas: {combined_data["mq135_gas"]:.2f} ppm
- Flame Detected: {"Yes" if combined_data["flame_detected"] else "No"}
**Vision Data:**
- CV Flame Score: {combined_data["cv_flame_score"] * 100:.2f}%
- CV Smoke Score: {combined_data["cv_smoke_score"] * 100:.2f}%
- Person Detected: {"Yes" if combined_data["person_detected"] else "No"}
"""
return output, annotated_image
# Create Gradio interface
inputs = [
gr.Dropdown(choices=["Safe", "Gas Leak", "Fire Detected", "Warning", "Evacuate Immediately"], label="Scenario", value="Safe"),
gr.Image(type="numpy", label="Upload Image for Vision Detection (Optional)")
]
outputs = [
gr.Textbox(label="System Output"),
gr.Image(type="numpy", label="Annotated Image")
]
gr.Interface(
fn=predict_system,
inputs=inputs,
outputs=outputs,
title="Fire & Gas Leak Detection System",
description="Simulate sensor data and upload an image for vision detection to predict the threat level using a Random Forest model and YOLOv10."
).launch()