Spaces:
Sleeping
Sleeping
SakibRumu
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,35 +1,55 @@
|
|
1 |
import gradio as gr
|
2 |
-
from fastai.vision.all import
|
|
|
|
|
3 |
|
4 |
-
#
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
model = load_learner(model_path)
|
7 |
|
8 |
-
#
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
confidence = outputs[pred_idx] * 100 # Convert to percentage
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
with gr.Blocks(theme='gstaff/xkcd') as demo:
|
20 |
-
gr.Markdown("# Emotion Recognition Classifier")
|
21 |
-
|
22 |
-
with gr.Row():
|
23 |
-
with gr.Column():
|
24 |
-
# Image input widget
|
25 |
-
img_input = gr.Image(type="pil", label="Upload an image")
|
26 |
-
|
27 |
-
# Text output widgets for emotion prediction and confidence percentage
|
28 |
-
label_output = gr.Textbox(label="Predicted Emotion")
|
29 |
-
confidence_output = gr.Textbox(label="Confidence Percentage")
|
30 |
-
|
31 |
-
# Button to trigger emotion classification
|
32 |
-
img_input.upload(predict_emotion, img_input, [label_output, confidence_output])
|
33 |
-
|
34 |
-
# Run the app
|
35 |
-
demo.launch(share=True)
|
|
|
1 |
import gradio as gr
|
2 |
+
from fastai.vision.all import load_learner, PILImage
|
3 |
+
from PIL import Image
|
4 |
+
import torch
|
5 |
|
6 |
+
# Define the class mapping for the RAF-DB dataset
|
7 |
+
class_mapping = {
|
8 |
+
"1": "Surprise",
|
9 |
+
"2": "Fear",
|
10 |
+
"3": "Disgust",
|
11 |
+
"4": "Happiness",
|
12 |
+
"5": "Sadness",
|
13 |
+
"6": "Anger",
|
14 |
+
"7": "Contempt"
|
15 |
+
}
|
16 |
+
|
17 |
+
# Define the function to map folder names to labels
|
18 |
+
def get_raf_label(file_path):
|
19 |
+
# Use the class mapping to get the label
|
20 |
+
return class_mapping[str(file_path.parent.name)]
|
21 |
+
|
22 |
+
# Load the model
|
23 |
+
model_path = "Emotion_model_vggface2.pkl" # Replace with your actual model path
|
24 |
model = load_learner(model_path)
|
25 |
|
26 |
+
# Define the emotion classes
|
27 |
+
emotion_classes = list(class_mapping.values()) # Get emotion classes from the class mapping
|
28 |
+
|
29 |
+
# Gradio interface
|
30 |
+
st.title("Emotion Recognition Classifier")
|
31 |
+
|
32 |
+
# Upload an image
|
33 |
+
file = st.file_uploader("Upload an image of a face", type=["jpeg", "jpg", "png"])
|
34 |
+
|
35 |
+
if file is None:
|
36 |
+
st.write("Please upload an image to detect the emotion.")
|
37 |
+
else:
|
38 |
+
# Display the uploaded image
|
39 |
+
image = Image.open(file)
|
40 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
41 |
+
|
42 |
+
# Convert the image to a format that the model can accept
|
43 |
+
img = PILImage.create(file)
|
44 |
+
|
45 |
+
# Predict the emotion
|
46 |
+
st.write("Classifying the emotion...")
|
47 |
+
pred_class, pred_idx, outputs = model.predict(img)
|
48 |
+
|
49 |
+
# Get the predicted label and confidence
|
50 |
+
predicted_emotion = emotion_classes[pred_idx]
|
51 |
confidence = outputs[pred_idx] * 100 # Convert to percentage
|
52 |
+
|
53 |
+
# Show results
|
54 |
+
st.write(f"**Predicted Emotion:** {predicted_emotion}")
|
55 |
+
st.write(f"**Confidence:** {confidence:.2f}%")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|