# Copyright 2024-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import warnings from dataclasses import asdict from enum import Enum from typing import Optional import torch import torch.nn as nn from tqdm import tqdm from transformers.pytorch_utils import Conv1D from peft.tuners.tuners_utils import BaseTuner, BaseTunerLayer, check_target_module_exists from peft.utils import TRANSFORMERS_MODELS_TO_VBLORA_TARGET_MODULES_MAPPING, ModulesToSaveWrapper, _get_submodules from .config import VBLoRAConfig from .layer import Linear, VBLoRALayer class VBLoRAModel(BaseTuner): """ Creates VBLoRA model from a pretrained transformers model. The method is described in detail in https://arxiv.org/abs/2405.15179. Args: model ([`~transformers.PreTrainedModel`]): The model to be adapted. config ([`VBLoRAConfig`]): The configuration of the VBLoRA model. adapter_name (`str`): The name of the adapter, defaults to `"default"`. low_cpu_mem_usage (`bool`, `optional`, defaults to `False`): Create empty adapter weights on meta device. Useful to speed up the loading process. Returns: `torch.nn.Module`: The VBLoRA model. Example: ```py >>> from transformers import AutoModelForCausalLM >>> from peft import VBLoRAConfig, get_peft_model >>> base_model = AutoModelForCausalLM.from_pretrained("facebook/opt-125m") >>> config = VBLoRAConfig( ... task_type="SEQ_CLS", ... r=4, ... target_modules=["fc1", "fc2", "k_proj", "out_proj", "q_proj", "v_proj"], ... num_vectors=60, ... vector_length=256, ... save_only_topk_weights=True, ... ) >>> model = get_peft_model(base_model, config) ``` **Attributes**: - **model** ([`~transformers.PreTrainedModel`]) -- The model to be adapted. - **peft_config** ([`VBLoRAConfig`]): The configuration of the VBLoRAConfig model. """ prefix: str = "vblora_" def __init__(self, model, config, adapter_name, low_cpu_mem_usage: bool = False) -> None: super().__init__(model, config, adapter_name, low_cpu_mem_usage=low_cpu_mem_usage) def _init_vblora_vector_bank(self, config: VBLoRAConfig, adapter_name: str) -> None: vblora_vector_bank = torch.zeros(config.num_vectors, config.vector_length) torch.nn.init.uniform_(vblora_vector_bank, -config.init_vector_bank_bound, config.init_vector_bank_bound) self.vblora_vector_bank[adapter_name] = vblora_vector_bank def _pre_injection_hook(self, model: nn.Module, config: VBLoRAConfig, adapter_name: str) -> None: self.vblora_vector_bank = nn.ParameterDict({}) def _check_new_adapter_config(self, config: VBLoRAConfig) -> None: """ A helper method to check the config when a new adapter is being added. Raise a ValueError if there is something wrong with the config or if it conflicts with existing adapters. """ # the below todo is copied from LoRA # TODO: there should be a check if any of the existing adapters actually has bias != "none", or else the check # does not fully correspond to the error message. if (len(self.peft_config) > 1) and (config.bias != "none"): raise ValueError( f"{self.__class__.__name__} supports only 1 adapter with bias. When using multiple adapters, " "set bias to 'none' for all adapters." ) @staticmethod def _check_target_module_exists(vblora_config, key): return check_target_module_exists(vblora_config, key) def _create_and_replace( self, vblora_config, adapter_name, target, target_name, parent, current_key, ): if current_key is None: raise ValueError("Current Key shouldn't be `None`") bias = hasattr(target, "bias") and target.bias is not None kwargs = { "fan_in_fan_out": vblora_config.fan_in_fan_out, "bias": bias, } self._init_vblora_vector_bank(vblora_config, adapter_name) # TODO: add quantization support if isinstance(target, Linear): target.update_layer( adapter_name=adapter_name, vblora_vector_bank=self.vblora_vector_bank, r=vblora_config.r, topk=vblora_config.topk, num_vectors=vblora_config.num_vectors, vector_length=vblora_config.vector_length, vblora_dropout=vblora_config.vblora_dropout, init_logits_std=vblora_config.init_logits_std, ) else: new_module = self._create_new_module( vblora_config=vblora_config, vblora_vector_bank=self.vblora_vector_bank, adapter_name=adapter_name, target=target, **kwargs, ) if adapter_name not in self.active_adapter: # adding an additional adapter: it is not automatically trainable new_module.requires_grad_(False) self._replace_module(parent, target_name, new_module, target) @staticmethod def _replace_module(parent, child_name, new_module, child): setattr(parent, child_name, new_module) # It's not necessary to set requires_grad here, as that is handled by # _mark_only_adapters_as_trainable # child layer wraps the original module, unpack it if hasattr(child, "base_layer"): child = child.base_layer if not hasattr(new_module, "base_layer"): new_module.weight = child.weight if hasattr(child, "bias"): new_module.bias = child.bias if getattr(child, "state", None) is not None: if hasattr(new_module, "base_layer"): new_module.base_layer.state = child.state else: new_module.state = child.state new_module.to(child.weight.device) meta = torch.device("meta") # dispatch to correct device for name, module in new_module.named_modules(): if "vblora_" in name: if not any(p.device == meta for p in module.parameters()): module.to(child.weight.device) def _mark_only_adapters_as_trainable(self, model: nn.Module) -> None: for n, p in model.named_parameters(): if self.prefix not in n: p.requires_grad = False for active_adapter in self.active_adapters: bias = self.peft_config[active_adapter].bias if bias == "none": continue if bias == "all": for n, p in model.named_parameters(): if "bias" in n: p.requires_grad = True elif bias == "vblora_only": for m in model.modules(): if isinstance(m, VBLoRALayer) and hasattr(m, "bias") and m.bias is not None: m.bias.requires_grad = True else: raise NotImplementedError(f"Requested bias: {bias}, is not implemented.") @staticmethod def _create_new_module(vblora_config, vblora_vector_bank, adapter_name, target, **kwargs): if isinstance(target, BaseTunerLayer): target_base_layer = target.get_base_layer() else: target_base_layer = target if isinstance(target_base_layer, torch.nn.Linear): if kwargs["fan_in_fan_out"]: warnings.warn( "fan_in_fan_out is set to True but the target module is `torch.nn.Linear`. " "Setting fan_in_fan_out to False." ) kwargs["fan_in_fan_out"] = vblora_config.fan_in_fan_out = False elif isinstance(target_base_layer, Conv1D): kwargs["is_target_conv_1d_layer"] = True if not kwargs["fan_in_fan_out"]: warnings.warn( "fan_in_fan_out is set to False but the target module is `Conv1D`. " "Setting fan_in_fan_out to True." ) kwargs["fan_in_fan_out"] = vblora_config.fan_in_fan_out = True else: raise ValueError( f"Target module {target} is not supported. Currently, only the following modules are supported: " "`torch.nn.Linear`, `transformers.pytorch_utils.Conv1D`." ) new_module = Linear( base_layer=target, vblora_vector_bank=vblora_vector_bank, adapter_name=adapter_name, r=vblora_config.r, num_vectors=vblora_config.num_vectors, vector_length=vblora_config.vector_length, topk=vblora_config.topk, vblora_dropout=vblora_config.vblora_dropout, init_logits_std=vblora_config.init_logits_std, **kwargs, ) return new_module def __getattr__(self, name: str): """Forward missing attributes to the wrapped module.""" try: return super().__getattr__(name) # defer to nn.Module's logic except AttributeError: if name == "model": # see #1892: prevent infinite recursion if class is not initialized raise return getattr(self.model, name) def get_peft_config_as_dict(self, inference: bool = False): config_dict = {} for key, value in self.peft_config.items(): config = {k: v.value if isinstance(v, Enum) else v for k, v in asdict(value).items()} if inference: config["inference_mode"] = True config_dict[key] = config return config def _set_adapter_layers(self, enabled: bool = True) -> None: for module in self.model.modules(): if isinstance(module, (BaseTunerLayer, ModulesToSaveWrapper)): module.enable_adapters(enabled) def enable_adapter_layers(self) -> None: """Enable all adapters. Call this if you have previously disabled all adapters and want to re-enable them. """ self._set_adapter_layers(enabled=True) def disable_adapter_layers(self) -> None: """Disable all adapters. When disabling all adapters, the model output corresponds to the output of the base model. """ for active_adapter in self.active_adapters: val = self.peft_config[active_adapter].bias if val != "none": msg = ( f"Careful, disabling adapter layers with bias configured to be '{val}' does not produce the same " "output as the the base model would without adaption." ) warnings.warn(msg) self._set_adapter_layers(enabled=False) def set_adapter(self, adapter_name: str | list[str]) -> None: """Set the active adapter(s). Additionally, this function will set the specified adapters to trainable (i.e., requires_grad=True). If this is not desired, use the following code. ```py >>> for name, param in model_peft.named_parameters(): ... if ...: # some check on name (ex. if 'lora' in name) ... param.requires_grad = False ``` Args: adapter_name (`str` or `list[str]`): Name of the adapter(s) to be activated. """ for module in self.model.modules(): if isinstance(module, VBLoRALayer): if module.merged: warnings.warn("Adapter cannot be set when the model is merged. Unmerging the model first.") module.unmerge() module.set_adapter(adapter_name) self.active_adapter = adapter_name @staticmethod def _prepare_adapter_config(peft_config, model_config): if peft_config.target_modules is None: if model_config["model_type"] not in TRANSFORMERS_MODELS_TO_VBLORA_TARGET_MODULES_MAPPING: raise ValueError("Please specify `target_modules` in `peft_config`") peft_config.target_modules = set( TRANSFORMERS_MODELS_TO_VBLORA_TARGET_MODULES_MAPPING[model_config["model_type"]] ) return peft_config def _unload_and_optionally_merge( self, merge=True, progressbar: bool = False, safe_merge: bool = False, adapter_names: Optional[list[str]] = None, ): key_list = [key for key, _ in self.model.named_modules() if self.prefix not in key] desc = "Unloading " + ("and merging " if merge else "") + "model" for key in tqdm(key_list, disable=not progressbar, desc=desc): try: parent, target, target_name = _get_submodules(self.model, key) except AttributeError: continue if hasattr(target, "base_layer"): if merge: target.merge(safe_merge=safe_merge, adapter_names=adapter_names) self._replace_module(parent, target_name, target.get_base_layer(), target) elif isinstance(target, ModulesToSaveWrapper): # save any additional trainable modules part of `modules_to_save` setattr(parent, target_name, target.modules_to_save[target.active_adapter]) return self.model def delete_adapter(self, adapter_name: str) -> None: """ Deletes an existing adapter. Args: adapter_name (str): Name of the adapter to be deleted. """ if adapter_name not in list(self.peft_config.keys()): raise ValueError(f"Adapter {adapter_name} does not exist") del self.peft_config[adapter_name] key_list = [key for key, _ in self.model.named_modules() if self.prefix not in key] new_adapter = None for key in key_list: _, target, _ = _get_submodules(self.model, key) if isinstance(target, VBLoRALayer): target.delete_adapter(adapter_name) if new_adapter is None: new_adapter = target.active_adapter[:] self.active_adapter = new_adapter or [] def merge_and_unload( self, progressbar: bool = False, safe_merge: bool = False, adapter_names: Optional[list[str]] = None ) -> torch.nn.Module: r""" This method merges the VBLoRA layers into the base model. This is needed if someone wants to use the base model as a standalone model. Args: progressbar (`bool`): whether to show a progressbar indicating the unload and merge process safe_merge (`bool`): whether to activate the safe merging check to check if there is any potential Nan in the adapter weights adapter_names (`list[str]`, *optional*): The list of adapter names that should be merged. If None, all active adapters will be merged. Defaults to `None`. Example: ```py >>> from transformers import AutoModelForCausalLM >>> from peft import PeftModel >>> base_model = AutoModelForCausalLM.from_pretrained("tiiuae/falcon-40b") >>> peft_model_id = "smangrul/falcon-40B-int4-peft-lora-sfttrainer-sample" >>> model = PeftModel.from_pretrained(base_model, peft_model_id) >>> merged_model = model.merge_and_unload() ``` """ return self._unload_and_optionally_merge( progressbar=progressbar, safe_merge=safe_merge, adapter_names=adapter_names ) def unload(self): """ Gets back the base model by removing all the VBLoRA modules without merging. This gives back the original base model. """ return self._unload_and_optionally_merge(merge=False) def get_nb_savable_parameters(self, adapter="default") -> tuple[int, int]: r""" Returns the number of savable VB-LoRA parameters and other savable parameters. """ logits_params = 0 vector_bank_params = 0 other_params = 0 for name, param in self.named_parameters(): if "vblora_logits" in name: logits_params += param.numel() elif "vblora_vector_bank" in name: vector_bank_params += param.numel() elif param.requires_grad: other_params += param.numel() if self.peft_config[adapter].save_only_topk_weights: num_vectors = self.peft_config[adapter].num_vectors factor = 1 # factor to count float32-equivalent parameters if num_vectors < 2**8: factor = 0.25 elif num_vectors < 2**15: factor = 0.5 elif num_vectors < 2**31: factor = 1 else: factor = 2 topk_weight_params = ( logits_params / self.peft_config[adapter].num_vectors * (self.peft_config[adapter].topk - 1) ) topk_indices_params = ( logits_params / self.peft_config[adapter].num_vectors * self.peft_config[adapter].topk * factor ) vblora_params = int(vector_bank_params + topk_weight_params + topk_indices_params) else: vblora_params = vector_bank_params + logits_params return vblora_params, other_params def print_savable_parameters(self) -> None: r""" Prints the number of savable VB-LoRA parameters and total savable parameters. """ vblora_params, other_params = self.get_nb_savable_parameters() print( f"VB-LoRA params to-be-saved (float32-equivalent): {vblora_params:,d} " f"|| total params to-be-saved: {(vblora_params + other_params):,d}" )