# Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import math import warnings from typing import Any, Optional, Union import torch import torch.nn as nn import torch.nn.functional as F from accelerate.utils.imports import is_xpu_available from torch import svd_lowrank from transformers.pytorch_utils import Conv1D from peft.tuners.tuners_utils import BaseTunerLayer, check_adapters_to_merge from peft.utils.integrations import dequantize_module_weight, gather_params_ctx, get_bnb_param_type from peft.utils.other import transpose from .config import LoraConfig from .dora import DoraConv2dLayer, DoraConv3dLayer, DoraEmbeddingLayer, DoraLinearLayer, _DoraConvNdLayer class LoraLayer(BaseTunerLayer): # All names of layers that may contain (trainable) adapter weights adapter_layer_names = ("lora_A", "lora_B", "lora_embedding_A", "lora_embedding_B","lora_route") # All names of other parameters that may contain adapter-related parameters other_param_names = ("r", "lora_alpha", "scaling", "lora_dropout") def __init__(self, base_layer: nn.Module, ephemeral_gpu_offload: bool = False, **kwargs) -> None: self.base_layer = base_layer self.r = {} self.lora_alpha = {} self.scaling = {} self.lora_dropout = nn.ModuleDict({}) self.lora_A = nn.ModuleDict({}) self.lora_B = nn.ModuleDict({}) # For Embedding layer self.lora_embedding_A = nn.ParameterDict({}) self.lora_embedding_B = nn.ParameterDict({}) # For Moe Lora self.lora_route = nn.ModuleDict({}) # Mark the weight as unmerged self._disable_adapters = False self.merged_adapters = [] self.use_dora: dict[str, bool] = {} self.lora_bias: dict[str, bool] = {} self.lora_magnitude_vector = torch.nn.ModuleDict() # for DoRA self._caches: dict[str, Any] = {} self.ephemeral_gpu_offload: bool = ephemeral_gpu_offload self.kwargs = kwargs base_layer = self.get_base_layer() if isinstance(base_layer, nn.Linear): in_features, out_features = base_layer.in_features, base_layer.out_features elif isinstance(base_layer, nn.Conv2d): in_features, out_features = base_layer.in_channels, base_layer.out_channels elif isinstance(base_layer, nn.Conv3d): in_features, out_features = base_layer.in_channels, base_layer.out_channels elif isinstance(base_layer, nn.Embedding): in_features, out_features = base_layer.num_embeddings, base_layer.embedding_dim elif isinstance(base_layer, Conv1D): in_features, out_features = ( base_layer.weight.ds_shape if hasattr(base_layer.weight, "ds_shape") else base_layer.weight.shape ) elif hasattr(base_layer, "infeatures") and hasattr(base_layer, "outfeatures"): # QuantLinear in_features, out_features = base_layer.infeatures, base_layer.outfeatures elif hasattr(base_layer, "input_size") and hasattr(base_layer, "output_size"): # Megatron ColumnParallelLinear,RowParallelLinear in_features, out_features = base_layer.input_size, base_layer.output_size elif hasattr(base_layer, "codebooks") and base_layer.__class__.__name__ == "QuantizedLinear": # AQLM QuantLinear in_features, out_features = base_layer.in_features, base_layer.out_features elif hasattr(base_layer, "w_bit") and base_layer.__class__.__name__ == "WQLinear_GEMM": # Awq layers in_features, out_features = base_layer.in_features, base_layer.out_features elif base_layer.__class__.__name__ == "EetqLinear": # Eetq layers in_features, out_features = base_layer.in_features, base_layer.out_features elif hasattr(base_layer, "W_q") and base_layer.__class__.__name__ == "HQQLinear": # HQQ layers in_features, out_features = base_layer.in_features, base_layer.out_features else: # possibly support user provided custom layer types using dynamic dispatch if hasattr(base_layer, "in_features") and hasattr(base_layer, "out_features"): in_features, out_features = base_layer.in_features, base_layer.out_features else: in_features, out_features = None, None warnings.warn( f"Unsupported layer type '{type(base_layer)}' encountered, proceed at your own risk.", UserWarning ) self.in_features = in_features self.out_features = out_features def update_layer( self, adapter_name, r, lora_alpha, lora_dropout, init_lora_weights, use_rslora, use_dora: bool = False, lora_bias: bool = False, ): # This code works for linear layers, override for other layer types if r <= 0: raise ValueError(f"`r` should be a positive integer value but the value passed is {r}") self.r[adapter_name] = r self.lora_alpha[adapter_name] = lora_alpha if lora_dropout > 0.0: lora_dropout_layer = nn.Dropout(p=lora_dropout) else: lora_dropout_layer = nn.Identity() self.lora_dropout.update(nn.ModuleDict({adapter_name: lora_dropout_layer})) # Actual trainable parameters self.lora_A[adapter_name] = nn.Linear(self.in_features, r, bias=False) self.lora_B[adapter_name] = nn.Linear(r, self.out_features, bias=lora_bias) self.lora_bias[adapter_name] = lora_bias if use_rslora: self.scaling[adapter_name] = lora_alpha / math.sqrt(r) else: self.scaling[adapter_name] = lora_alpha / r # for inits that require access to the base weight, use gather_param_ctx so that the weight is gathered when using DeepSpeed if isinstance(init_lora_weights, str) and init_lora_weights.startswith("pissa"): with gather_params_ctx(self.get_base_layer().weight): self.pissa_init(adapter_name, init_lora_weights) elif isinstance(init_lora_weights, str) and init_lora_weights.lower() == "olora": with gather_params_ctx(self.get_base_layer().weight): self.olora_init(adapter_name) elif init_lora_weights == "loftq": with gather_params_ctx(self.get_base_layer().weight): self.loftq_init(adapter_name) elif init_lora_weights == "eva": nn.init.zeros_(self.lora_B[adapter_name].weight) elif init_lora_weights: self.reset_lora_parameters(adapter_name, init_lora_weights) # call this before dora_init self._move_adapter_to_device_of_base_layer(adapter_name) if use_dora: self.dora_init(adapter_name) self.use_dora[adapter_name] = True else: self.use_dora[adapter_name] = False self.set_adapter(self.active_adapters) def reset_lora_parameters(self, adapter_name, init_lora_weights): if init_lora_weights is False: return if adapter_name in self.lora_A.keys(): if init_lora_weights is True: # initialize A the same way as the default for nn.Linear and B to zero # https://github.com/microsoft/LoRA/blob/a0a92e0f26c067cf94747bdbf1ce73793fa44d19/loralib/layers.py#L124 nn.init.kaiming_uniform_(self.lora_A[adapter_name].weight, a=math.sqrt(5)) elif init_lora_weights.lower() == "gaussian": nn.init.normal_(self.lora_A[adapter_name].weight, std=1 / self.r[adapter_name]) else: raise ValueError(f"Unknown initialization {init_lora_weights=}") nn.init.zeros_(self.lora_B[adapter_name].weight) if self.lora_bias[adapter_name]: nn.init.zeros_(self.lora_B[adapter_name].bias) if adapter_name in self.lora_embedding_A.keys(): # Initialize A to zeros and B the same way as the default for nn.Embedding, see: # https://github.com/microsoft/LoRA/blob/4c0333854cb905966f8cc4e9a74068c1e507c7b7/loralib/layers.py#L59-L60 nn.init.zeros_(self.lora_embedding_A[adapter_name]) nn.init.normal_(self.lora_embedding_B[adapter_name]) if self.lora_bias[adapter_name]: # embeddings are not supported at the moment, but still adding this for consistency nn.init.zeros_(self.lora_embedding_B[adapter_name].bias) def olora_init(self, adapter_name): base_layer = self.get_base_layer() orig_weight = base_layer.weight bnb_param_type = get_bnb_param_type(orig_weight) dtype = orig_weight.dtype if bnb_param_type: # check without importing bitsandbytes and robust to bnb_4bit_quant_storage=float* weight_tensor = dequantize_module_weight(base_layer) elif dtype in [torch.float32, torch.float16, torch.bfloat16]: weight_tensor = orig_weight else: raise TypeError(f"Unsupported data type for the base layer. Got {dtype}.") scale_factor = self.scaling[adapter_name] r = self.r[adapter_name] weight_tensor = weight_tensor.to(torch.float32) Q, R = torch.linalg.qr(weight_tensor.data) Qr, Rr = Q[:, :r], R[:r] self.lora_A[adapter_name].weight.data = Rr.contiguous() self.lora_B[adapter_name].weight.data = Qr.contiguous() weight_tensor.data -= scale_factor * self.lora_B[adapter_name].weight @ self.lora_A[adapter_name].weight if bnb_param_type == "4bit": weight_tensor = orig_weight.__class__( weight_tensor, quant_type=orig_weight.quant_type, quant_storage=orig_weight.quant_storage, compress_statistics=orig_weight.compress_statistics, module=orig_weight.module, ).to(orig_weight.device) base_layer.weight = weight_tensor elif bnb_param_type == "8bit": weight_tensor = orig_weight.__class__( weight_tensor, requires_grad=orig_weight.requires_grad, has_fp16_weights=orig_weight.has_fp16_weights, ).to(orig_weight.device) base_layer.weight = weight_tensor else: weight_tensor = weight_tensor.to(dtype) base_layer.weight.data = weight_tensor def pissa_init(self, adapter_name, init_lora_weights): weight = self.get_base_layer().weight dtype = weight.dtype if dtype not in [torch.float32, torch.float16, torch.bfloat16]: raise TypeError( "Please initialize PiSSA under float32, float16, or bfloat16. " "Subsequently, re-quantize the residual model to help minimize quantization errors." ) weight = transpose(weight.to(torch.float32), self.fan_in_fan_out) if init_lora_weights == "pissa": # USV^T = W <-> VSU^T = W^T, where W^T = weight.data in R^{out_channel, in_channel}, V, S, Uh = torch.linalg.svd(weight.data, full_matrices=False) Vr = V[:, : self.r[adapter_name]] Sr = S[: self.r[adapter_name]] Sr /= self.scaling[adapter_name] Uhr = Uh[: self.r[adapter_name]] elif len(init_lora_weights.split("_niter_")) == 2: Vr, Sr, Ur = svd_lowrank( weight.data, self.r[adapter_name], niter=int(init_lora_weights.split("_niter_")[-1]) ) Sr /= self.scaling[adapter_name] Uhr = Ur.t() else: raise ValueError( f"init_lora_weights should be 'pissa' or 'pissa_niter_[number of iters]', got {init_lora_weights} instead." ) lora_A = torch.diag(torch.sqrt(Sr)) @ Uhr lora_B = Vr @ torch.diag(torch.sqrt(Sr)) self.lora_A[adapter_name].weight.data = lora_A self.lora_B[adapter_name].weight.data = lora_B weight = weight.data - self.scaling[adapter_name] * lora_B @ lora_A weight = transpose(weight.to(dtype), self.fan_in_fan_out) self.get_base_layer().weight.data = weight def loftq_init(self, adapter_name): from peft.utils.loftq_utils import loftq_init weight = self.get_base_layer().weight kwargs = { "num_bits": self.kwargs.get("loftq_bits", 4), "reduced_rank": self.r[adapter_name], "num_iter": self.kwargs.get("loftq_iter", 1), } qweight, lora_A, lora_B = loftq_init(weight, **kwargs) if adapter_name in self.lora_A.keys(): # initialize A the same way as the default for nn.Linear and B to zero self.lora_A[adapter_name].weight.data = lora_A self.lora_B[adapter_name].weight.data = lora_B if adapter_name in self.lora_embedding_A.keys(): # initialize a the same way as the default for nn.linear and b to zero self.lora_embedding_A[adapter_name].weight.data = lora_A self.lora_embedding_B[adapter_name].weight.data = lora_B self.get_base_layer().weight.data = qweight def dora_init(self, adapter_name: str) -> None: if not self.lora_magnitude_vector: # first dora layer being added, add lora_magnitude_vector to the list of learnable parameters self.adapter_layer_names = self.adapter_layer_names[:] + ("lora_magnitude_vector",) dora_layer = DoraLinearLayer(fan_in_fan_out=getattr(self, "fan_in_fan_out", False)) lora_A = self.lora_A[adapter_name].weight lora_B = self.lora_B[adapter_name].weight place_on_cpu = self.ephemeral_gpu_offload and (lora_A.device.type == "cpu" or lora_B.device.type == "cpu") if self.ephemeral_gpu_offload: if lora_A.device.type in ["cuda", "xpu"]: lora_B = lora_B.to(lora_A.device) else: if lora_B.device.type not in ["cuda", "xpu"]: if is_xpu_available(): lora_B = lora_B.to("xpu") else: lora_B = lora_B.to("cuda") lora_A = lora_A.to(lora_B.device) scaling = self.scaling[adapter_name] dora_layer.update_layer( base_layer=self.get_base_layer(), lora_A=lora_A, lora_B=lora_B, scaling=scaling, place_on_cpu=place_on_cpu ) self.lora_magnitude_vector[adapter_name] = dora_layer def _cache_store(self, key: str, value: Any) -> None: self._caches[key] = value def _cache_pop(self, key: str) -> Any: value = self._caches.pop(key) return value def set_scale(self, adapter, scale): if adapter not in self.scaling: # Ignore the case where the adapter is not in the layer return self.scaling[adapter] = scale * self.lora_alpha[adapter] / self.r[adapter] def scale_layer(self, scale: float) -> None: if scale == 1: return for active_adapter in self.active_adapters: if active_adapter not in self.lora_A.keys(): continue self.scaling[active_adapter] *= scale def unscale_layer(self, scale=None) -> None: for active_adapter in self.active_adapters: if active_adapter not in self.lora_A.keys(): continue if scale is None: self.scaling[active_adapter] = self.lora_alpha[active_adapter] / self.r[active_adapter] else: self.scaling[active_adapter] /= scale def _check_forward_args(self, x, *args, **kwargs): """Check if the arguments are compatible with the configs and state of the model""" adapter_names = kwargs.get("adapter_names", None) if adapter_names is None: return if len(x) != len(adapter_names): msg = ( "Length of `adapter_names` should be the same as the number of inputs, but got " f"{len(adapter_names)} and {len(x)} respectively." ) raise ValueError(msg) if self.merged: # It is unclear what would be the right thing to do if users pass adapter_names and there are merged # adapters. Therefore, it is better to raise an error in this case. msg = "Cannot pass `adapter_names` when there are merged adapters, please call `unmerge_adapter` first." raise ValueError(msg) # DoRA is not supported (yet), check that it's not being used. Don't check "__base__", as this is the # placeholder for the base model. unique_adapters = {name for name in adapter_names if name != "__base__"} for adapter_name in unique_adapters: if self.use_dora.get(adapter_name, False): msg = "Cannot pass `adapter_names` when DoRA is enabled." raise ValueError(msg) def _mixed_batch_forward( self, x: torch.Tensor, *args: Any, adapter_names: list[str], **kwargs: Any ) -> torch.Tensor: # This is a special method that handles the case when users pass the argument `adapter_names`. This is an # extra argument that allows mixing different adapters in the same batch at inference time. result = self.base_layer(x, *args, **kwargs) torch_result_dtype = result.dtype unique_adapters = set(adapter_names) sub_batch_indices_list = [] for adapter in unique_adapters: sub_batch_indices_list.append([index for index, item in enumerate(adapter_names) if item == adapter]) for i, active_adapter in enumerate(unique_adapters): if active_adapter == "__base__": continue if active_adapter not in self.lora_A.keys(): continue lora_A = self.lora_A[active_adapter] lora_B = self.lora_B[active_adapter] dropout = self.lora_dropout[active_adapter] scaling = self.scaling[active_adapter] # getting the sub-batch, passing it to LoRA layers and updating the corresponding indices of the linear # layer output sub_batch = x[sub_batch_indices_list[i]].to(lora_A.weight.dtype) lora_output = lora_B(lora_A(dropout(sub_batch))) * scaling result[sub_batch_indices_list[i]] += lora_output.to(torch_result_dtype) return result # Below code is based on https://github.com/microsoft/LoRA/blob/main/loralib/layers.py # and modified to work with PyTorch FSDP # ------------------------------------------------------------------------------------------ # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License (MIT). See LICENSE in the repo root for license information. # ------------------------------------------------------------------------------------------ class Linear(nn.Module, LoraLayer): # Lora implemented in a dense layer def __init__( self, base_layer, adapter_name: str, r: int = 0, lora_alpha: int = 1, lora_dropout: float = 0.0, fan_in_fan_out: bool = False, # Set this to True if the layer to replace stores weight like (fan_in, fan_out) is_target_conv_1d_layer: bool = False, init_lora_weights: Union[bool, str] = True, use_rslora: bool = False, use_dora: bool = False, lora_bias: bool = False, **kwargs, ) -> None: super().__init__() LoraLayer.__init__(self, base_layer, **kwargs) self.fan_in_fan_out = fan_in_fan_out self._active_adapter = adapter_name self.num_experts = kwargs.get("num_experts", 1) self.expert_rank = kwargs.get("expert_rank", 4) self.expert_alpha = kwargs.get("expert_alpha", 4) self.top_k = kwargs.get("top_k", 4) self.blc_alpha = kwargs.get("blc_alpha", 0.0) self.blc_weight = kwargs.get("blc_weight", 0.0) if "ff.net" in kwargs["current_key"] or "proj_out" in kwargs["current_key"]: self.moe_lora = True self.update_moe_layer( adapter_name, r, lora_alpha=lora_alpha, lora_dropout=lora_dropout, init_lora_weights=init_lora_weights, use_rslora=use_rslora, use_dora=use_dora, lora_bias=lora_bias, num_experts=self.num_experts, expert_rank=self.expert_rank, expert_alpha=self.expert_alpha, ) else: self.moe_lora = False self.update_layer( adapter_name, r, lora_alpha=lora_alpha, lora_dropout=lora_dropout, init_lora_weights=init_lora_weights, use_rslora=use_rslora, use_dora=use_dora, lora_bias=lora_bias, ) self.is_target_conv_1d_layer = is_target_conv_1d_layer def update_moe_layer( self, adapter_name, r, lora_alpha, lora_dropout, init_lora_weights, use_rslora, use_dora: bool = False, lora_bias: bool = False, num_experts: int = 1, expert_rank: int = 4, expert_alpha: float = 4, ): expert_list = [] for i in range(num_experts): expert_list.append(f"expert_{i}") # This code works for linear layers, override for other layer types if r <= 0 or num_experts <= 0 or expert_rank <= 0: raise ValueError(f"`r` should be a positive integer value but the value passed is {r}") if self.top_k > num_experts: raise ValueError(f"`top_k` should be a positive integer value but the value passed is {self.top_k}") self.r[adapter_name] = expert_rank self.lora_alpha[adapter_name] = expert_alpha if lora_dropout > 0.0: lora_dropout_layer = nn.Dropout(p=lora_dropout) else: lora_dropout_layer = nn.Identity() self.lora_dropout.update(nn.ModuleDict({adapter_name: lora_dropout_layer})) # Actual trainable parameters # experts in dict for i in range(num_experts): expert_name = expert_list[i] self.lora_A[expert_name] = nn.Linear(self.in_features, expert_rank, bias=False) self.lora_B[expert_name] = nn.Linear(expert_rank, self.out_features, bias=lora_bias) self.r[expert_name] = expert_rank self.lora_alpha[expert_name] = expert_alpha self.lora_bias[expert_name] = lora_bias self.lora_dropout.update(nn.ModuleDict({expert_name: lora_dropout_layer})) self.scaling[expert_name] = expert_alpha / expert_rank self.lora_route[adapter_name] = nn.Linear(self.in_features, num_experts, bias=False) self.lora_bias[adapter_name] = lora_bias if use_rslora: self.scaling[adapter_name] = expert_alpha / math.sqrt(expert_rank) else: self.scaling[adapter_name] = expert_alpha / expert_rank # for inits that require access to the base weight, use gather_param_ctx so that the weight is gathered when using DeepSpeed if isinstance(init_lora_weights, str) and init_lora_weights.startswith("pissa"): with gather_params_ctx(self.get_base_layer().weight): self.pissa_init(adapter_name, init_lora_weights) elif isinstance(init_lora_weights, str) and init_lora_weights.lower() == "olora": with gather_params_ctx(self.get_base_layer().weight): self.olora_init(adapter_name) elif init_lora_weights == "loftq": with gather_params_ctx(self.get_base_layer().weight): self.loftq_init(adapter_name) elif init_lora_weights == "eva": nn.init.zeros_(self.lora_B[adapter_name].weight) elif init_lora_weights: self.reset_lora_parameters(adapter_name, init_lora_weights) for i in range(num_experts): expert_name = f"expert_{i}" self.reset_lora_parameters(expert_name, init_lora_weights) # call this before dora_init self._move_adapter_to_device_of_base_layer(adapter_name) for i in range(num_experts): expert_name = expert_list[i] self._move_adapter_to_device_of_base_layer(expert_name) if use_dora: self.dora_init(adapter_name) self.use_dora[adapter_name] = True else: self.use_dora[adapter_name] = False self.set_adapter(self.active_adapters+expert_list) def merge(self, safe_merge: bool = False, adapter_names: Optional[list[str]] = None) -> None: """ Merge the active adapter weights into the base weights Args: safe_merge (`bool`, *optional*): If True, the merge operation will be performed in a copy of the original weights and check for NaNs before merging the weights. This is useful if you want to check if the merge operation will produce NaNs. Defaults to `False`. adapter_names (`list[str]`, *optional*): The list of adapter names that should be merged. If None, all active adapters will be merged. Defaults to `None`. """ adapter_names = check_adapters_to_merge(self, adapter_names) if not adapter_names: # no adapter to merge return for active_adapter in adapter_names: if active_adapter in self.lora_A.keys(): base_layer = self.get_base_layer() if safe_merge: # Note that safe_merge will be slower than the normal merge # because of the copy operation. orig_weights = base_layer.weight.data.clone() delta_weight = self.get_delta_weight(active_adapter) if not self.use_dora[active_adapter]: orig_weights += delta_weight else: # handle dora # since delta_weight already includes scaling, set it to 1 here weight_norm = ( self.lora_magnitude_vector[active_adapter] .get_weight_norm(orig_weights, transpose(delta_weight, self.fan_in_fan_out), scaling=1) .detach() ) # We need to cache weight_norm because it has to be based on the original weights. We # cannot calculate it on the fly based on the merged weights when unmerging because its a # different value self._cache_store(f"{active_adapter}-weight_norm", weight_norm) dora_factor = self.lora_magnitude_vector[active_adapter].weight / weight_norm dora_factor = transpose(dora_factor.view(-1, 1), self.fan_in_fan_out) orig_weights = dora_factor * (orig_weights + delta_weight) if not torch.isfinite(orig_weights).all(): raise ValueError( f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken" ) base_layer.weight.data = orig_weights if self.lora_bias[active_adapter]: new_bias = base_layer.bias + self.lora_B[active_adapter].bias if not torch.isfinite(new_bias).all(): raise ValueError( f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken" ) base_layer.bias.data = new_bias else: delta_weight = self.get_delta_weight(active_adapter) if not self.use_dora[active_adapter]: base_layer.weight.data += delta_weight else: # handle dora # since delta_weight already includes scaling, set it to 1 here weight_norm = ( self.lora_magnitude_vector[active_adapter] .get_weight_norm( base_layer.weight, transpose(delta_weight, self.fan_in_fan_out), scaling=1 ) .detach() ) # We need to cache weight_norm because it has to be based on the original weights. We # cannot calculate it on the fly based on the merged weights when unmerging because its a # different value self._cache_store(f"{active_adapter}-weight_norm", weight_norm) dora_factor = self.lora_magnitude_vector[active_adapter].weight / weight_norm new_weight = dora_factor.view(-1, 1) * (base_layer.weight.data + delta_weight) base_layer.weight.data = new_weight if self.lora_bias[active_adapter]: base_layer.bias.data += self.lora_B[active_adapter].bias self.merged_adapters.append(active_adapter) def unmerge(self) -> None: """ This method unmerges all merged adapter layers from the base weights. """ if not self.merged: warnings.warn("Already unmerged. Nothing to do.") return while len(self.merged_adapters) > 0: active_adapter = self.merged_adapters.pop() if active_adapter in self.lora_A.keys(): weight = self.get_base_layer().weight delta_weight = self.get_delta_weight(active_adapter) if not self.use_dora[active_adapter]: weight.data -= delta_weight else: weight_norm = self._cache_pop(f"{active_adapter}-weight_norm") dora_factor = self.lora_magnitude_vector[active_adapter].weight / weight_norm weight_orig = weight.data / dora_factor.view(-1, 1) - delta_weight weight.data = weight_orig if self.lora_bias[active_adapter]: self.get_base_layer().bias.data -= self.lora_B[active_adapter].bias def get_delta_weight(self, adapter) -> torch.Tensor: """ Compute the delta weight for the given adapter. Args: adapter (str): The name of the adapter for which the delta weight should be computed. """ device = self.lora_B[adapter].weight.device dtype = self.lora_A[adapter].weight.dtype # In case users wants to merge the adapter weights that are in # (b)float16 while being on CPU, we need to cast the weights to float32, perform the merge and then cast back to # (b)float16 because some CPUs have slow bf16/fp16 matmuls. cast_to_fp32 = device.type == "cpu" and (dtype == torch.float16 or dtype == torch.bfloat16) weight_A = self.lora_A[adapter].weight weight_B = self.lora_B[adapter].weight if cast_to_fp32: weight_A = weight_A.float() weight_B = weight_B.float() output_tensor = transpose(weight_B @ weight_A, self.fan_in_fan_out) * self.scaling[adapter] if cast_to_fp32: output_tensor = output_tensor.to(dtype=dtype) # cast back the weights self.lora_A[adapter].weight.data = weight_A.to(dtype) self.lora_B[adapter].weight.data = weight_B.to(dtype) return output_tensor def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor: if self.moe_lora: return self.moe_forward(x, *args, **kwargs) self._check_forward_args(x, *args, **kwargs) adapter_names = kwargs.pop("adapter_names", None) if self.disable_adapters: if self.merged: self.unmerge() result = self.base_layer(x, *args, **kwargs) elif adapter_names is not None: result = self._mixed_batch_forward(x, *args, adapter_names=adapter_names, **kwargs) elif self.merged: result = self.base_layer(x, *args, **kwargs) else: result = self.base_layer(x, *args, **kwargs) torch_result_dtype = result.dtype for active_adapter in self.active_adapters: if active_adapter not in self.lora_A.keys(): continue lora_A = self.lora_A[active_adapter] lora_B = self.lora_B[active_adapter] dropout = self.lora_dropout[active_adapter] scaling = self.scaling[active_adapter] x = x.to(lora_A.weight.dtype) if not self.use_dora[active_adapter]: result = result + lora_B(lora_A(dropout(x))) * scaling else: if isinstance(dropout, nn.Identity) or not self.training: base_result = result else: x = dropout(x) base_result = None result = result + self.lora_magnitude_vector[active_adapter]( x, lora_A=lora_A, lora_B=lora_B, scaling=scaling, base_layer=self.get_base_layer(), base_result=base_result, ) result = result.to(torch_result_dtype) return result def moe_forward(self, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor: moe_type="token_wise" self._check_forward_args(x, *args, **kwargs) adapter_names = kwargs.pop("adapter_names", None) if self.disable_adapters: if self.merged: self.unmerge() result = self.base_layer(x, *args, **kwargs) elif adapter_names is not None: result = self._mixed_batch_forward(x, *args, adapter_names=adapter_names, **kwargs) elif self.merged: result = self.base_layer(x, *args, **kwargs) else: if moe_type == "token_wise": result = self.base_layer(x, *args, **kwargs) torch_result_dtype = result.dtype activate_adapter_name = self.active_adapters[0] # 计算路由分数 route_logits = self.lora_route[activate_adapter_name](x) # 获取 top-k,保持梯度流 top_k_probs, top_k_indices = torch.topk(route_logits, k=self.top_k, dim=-1) top_k_probs = F.softmax(top_k_probs, dim=-1, dtype=torch.float32).to(result.dtype) # 创建掩码并应用 route_weight = torch.zeros_like(route_logits) route_weight=route_weight.scatter_(-1, top_k_indices, top_k_probs) # 计算 softmax,topk之外的weight应该是0 #print(route_weight.shape) #print(route_weight) # 应用专家 for i in range(self.num_experts): expert_name = f"expert_{i}" lora_A = self.lora_A[expert_name] lora_B = self.lora_B[expert_name] scaling = self.scaling[expert_name] dropout = self.lora_dropout[expert_name] result += lora_B(lora_A(dropout(x))) * scaling * torch.unsqueeze(route_weight[:,:,i], -1) result = result.to(torch_result_dtype) elif moe_type == "sequence_wise": result = self.base_layer(x, *args, **kwargs) torch_result_dtype = result.dtype activate_adapter_name = self.active_adapters[0] route_logits = self.lora_route[activate_adapter_name](x[:,0]) # 将route_logits扩展到与x相同的形状 route_logits=route_logits.unsqueeze(1).repeat(1,x.shape[1],1) # 获取 top-k,保持梯度流 top_k_probs, top_k_indices = torch.topk(route_logits, k=self.top_k, dim=-1) top_k_probs = F.softmax(top_k_probs, dim=-1, dtype=torch.float32).to(result.dtype) # 创建掩码并应用,mask应该初始值是负无穷-inf route_weight = torch.zeros_like(route_logits) route_weight=route_weight.scatter_(-1, top_k_indices, top_k_probs) # 计算 softmax,topk之外的weight应该是0 # 应用专家 for i in range(self.num_experts): expert_name = f"expert_{i}" lora_A = self.lora_A[expert_name] lora_B = self.lora_B[expert_name] scaling = self.scaling[expert_name] dropout = self.lora_dropout[expert_name] result += lora_B(lora_A(dropout(x))) * scaling * torch.unsqueeze(route_weight[:,:,i], -1) result = result.to(torch_result_dtype) return result def __repr__(self) -> str: rep = super().__repr__() return "lora." + rep class Embedding(nn.Module, LoraLayer): # LoRA implemented in a Embedding layer def __init__( self, base_layer: nn.Module, adapter_name: str, r: int = 0, lora_alpha: int = 1, lora_dropout: float = 0.0, init_lora_weights: Union[bool, str] = True, use_rslora: bool = False, use_dora: bool = False, lora_bias: bool = False, **kwargs, ) -> None: if lora_bias: # lora_bias=True is not supported (yet) for embedding layers, as they use nn.Parameter raise ValueError(f"lora_bias={lora_bias} is not supported for {self.__class__.__name__}.") super().__init__() LoraLayer.__init__(self, base_layer) self._active_adapter = adapter_name self.update_layer( adapter_name, r, lora_alpha=lora_alpha, lora_dropout=lora_dropout, init_lora_weights=init_lora_weights, use_rslora=use_rslora, use_dora=use_dora, lora_bias=lora_bias, ) def update_layer( self, adapter_name, r, lora_alpha, lora_dropout, init_lora_weights, use_rslora, use_dora, lora_bias ): if r <= 0: raise ValueError(f"`r` should be a positive integer value but the value passed is {r}") self.r[adapter_name] = r self.lora_alpha[adapter_name] = lora_alpha if lora_dropout > 0.0: lora_dropout_layer = nn.Dropout(p=lora_dropout) else: lora_dropout_layer = nn.Identity() self.lora_dropout[adapter_name] = lora_dropout_layer # Actual trainable parameters weight_A = torch.randn((r, self.in_features)) weight_B = torch.randn((self.out_features, r)) self.lora_embedding_A[adapter_name] = nn.Parameter(weight_A) self.lora_embedding_B[adapter_name] = nn.Parameter(weight_B) self.lora_bias[adapter_name] = lora_bias if use_rslora: self.scaling[adapter_name] = lora_alpha / math.sqrt(r) else: self.scaling[adapter_name] = lora_alpha / r if init_lora_weights == "loftq": self.loftq_init(adapter_name) elif init_lora_weights: self.reset_lora_parameters(adapter_name, init_lora_weights) # call this before dora_init self._move_adapter_to_device_of_base_layer(adapter_name) if use_dora: self.dora_init(adapter_name) self.use_dora[adapter_name] = True else: self.use_dora[adapter_name] = False self.set_adapter(self.active_adapters) def dora_init(self, adapter_name: str) -> None: if self.lora_magnitude_vector is None: # first dora layer being added, add lora_magnitude_vector to the list of learnable parameters self.adapter_layer_names = self.adapter_layer_names[:] + ("lora_magnitude_vector",) dora_layer = DoraEmbeddingLayer(fan_in_fan_out=True) lora_embedding_A = self.lora_embedding_A[adapter_name] lora_embedding_B = self.lora_embedding_B[adapter_name] scaling = self.scaling[adapter_name] dora_layer.update_layer( base_layer=self.get_base_layer(), lora_A=lora_embedding_A, lora_B=lora_embedding_B, scaling=scaling ) self.lora_magnitude_vector[adapter_name] = dora_layer def merge(self, safe_merge: bool = False, adapter_names: Optional[list[str]] = None) -> None: """ Merge the active adapter weights into the base weights Args: safe_merge (`bool`, *optional*): If True, the merge operation will be performed in a copy of the original weights and check for NaNs before merging the weights. This is useful if you want to check if the merge operation will produce NaNs. Defaults to `False`. adapter_names (`list[str]`, *optional*): The list of adapter names that should be merged. If None, all active adapters will be merged. Defaults to `None`. """ adapter_names = check_adapters_to_merge(self, adapter_names) if not adapter_names: # no adapter to merge return for active_adapter in adapter_names: if active_adapter in self.lora_embedding_A.keys(): base_layer = self.get_base_layer() if safe_merge: # Note that safe_merge will be slower than the normal merge # because of the copy operation. orig_weights = base_layer.weight.data.clone() orig_weights += self.get_delta_weight(active_adapter) if not torch.isfinite(orig_weights).all(): raise ValueError( f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken" ) base_layer.weight.data = orig_weights else: base_layer.weight.data += self.get_delta_weight(active_adapter) self.merged_adapters.append(active_adapter) def unmerge(self) -> None: """ This method unmerges all merged adapter layers from the base weights. """ if not self.merged: warnings.warn("Already unmerged. Nothing to do.") return while len(self.merged_adapters) > 0: active_adapter = self.merged_adapters.pop() if active_adapter in self.lora_embedding_A.keys(): self.get_base_layer().weight.data -= self.get_delta_weight(active_adapter) def get_delta_weight(self, adapter) -> torch.Tensor: """ Compute the delta weight for the given adapter. Args: adapter (str): The name of the adapter for which the delta weight should be computed. """ device = self.lora_embedding_B[adapter].device dtype = self.lora_embedding_A[adapter].dtype # In case users wants to merge the adapter weights that are in # (b)float16 while being on CPU, we need to cast the weights to float32, perform the merge and then cast back to # (b)float16 because some CPUs have slow bf16/fp16 matmuls. cast_to_fp32 = device.type == "cpu" and (dtype == torch.float16 or dtype == torch.bfloat16) weight_A = self.lora_embedding_A[adapter] weight_B = self.lora_embedding_B[adapter] if cast_to_fp32: weight_A = weight_A.float() weight_B = weight_B.float() output_tensor = transpose(weight_B @ weight_A, True) * self.scaling[adapter] if cast_to_fp32: output_tensor = output_tensor.to(dtype=dtype) # cast back the weights self.lora_embedding_A[adapter] = weight_A.to(dtype) self.lora_embedding_B[adapter] = weight_B.to(dtype) return output_tensor def _mixed_batch_forward( self, x: torch.Tensor, *args: Any, adapter_names: list[str], **kwargs: Any ) -> torch.Tensor: # This is a special method that handles the case when users pass the argument `adapter_names`. This is an # extra argument that allows mixing different adapters in the same batch at inference time. result = self.base_layer(x, *args, **kwargs) unique_adapters = set(adapter_names) sub_batch_indices_list = [] for adapter in unique_adapters: sub_batch_indices_list.append([index for index, item in enumerate(adapter_names) if item == adapter]) for i, active_adapter in enumerate(unique_adapters): if active_adapter == "__base__": continue if active_adapter not in self.lora_embedding_A.keys(): continue embedding_A = self.lora_embedding_A[active_adapter].T embedding_B = self.lora_embedding_B[active_adapter].T scaling = self.scaling[active_adapter] # getting the sub-batch, passing it to LoRA layers and updating the corresponding indices of the linear # layer output sub_batch = x[sub_batch_indices_list[i]] after_A = self._embed(sub_batch, embedding_A) result[sub_batch_indices_list[i]] += (after_A @ embedding_B) * scaling return result def _embed(self, input: torch.Tensor, weight: torch.Tensor) -> torch.Tensor: base_layer = self.get_base_layer() return F.embedding( input, weight, padding_idx=base_layer.padding_idx, max_norm=base_layer.max_norm, norm_type=base_layer.norm_type, scale_grad_by_freq=base_layer.scale_grad_by_freq, sparse=base_layer.sparse, ) def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor: # TODO: no dtype conversion here, unlike in Linear, is that correct? self._check_forward_args(x, *args, **kwargs) adapter_names = kwargs.pop("adapter_names", None) if self.disable_adapters: if self.merged: self.unmerge() result = self.base_layer(x, *args, **kwargs) elif adapter_names is not None: result = self._mixed_batch_forward(x, *args, adapter_names=adapter_names, **kwargs) elif self.merged: result = self.base_layer(x, *args, **kwargs) else: result = self.base_layer(x, *args, **kwargs) torch_result_dtype = result.dtype for active_adapter in self.active_adapters: if active_adapter not in self.lora_embedding_A: continue embedding_A = self.lora_embedding_A[active_adapter].T embedding_B = self.lora_embedding_B[active_adapter].T scaling = self.scaling[active_adapter] if not self.use_dora[active_adapter]: after_A = self._embed(x, embedding_A) result = result + (after_A @ embedding_B) * scaling else: mag_norm_scale, dora_result = self.lora_magnitude_vector[active_adapter]( x, lora_A=embedding_A, lora_B=embedding_B, scaling=scaling, base_layer=self.get_base_layer(), embed_fn=self._embed, ) result = mag_norm_scale * result + dora_result result = result.to(torch_result_dtype) return result def __repr__(self) -> str: rep = super().__repr__() return "lora." + rep class _ConvNd(nn.Module, LoraLayer): # Lora implemented in a conv(2,3)d layer def __init__( self, base_layer: nn.Module, adapter_name: str, r: int = 0, lora_alpha: int = 1, lora_dropout: float = 0.0, init_lora_weights: Union[bool, str] = True, use_rslora: bool = False, use_dora: bool = False, lora_bias: bool = False, **kwargs, ) -> None: super().__init__() LoraLayer.__init__(self, base_layer) self._active_adapter = adapter_name self._kernel_dim = base_layer.weight.dim() self.update_layer( adapter_name, r, lora_alpha=lora_alpha, lora_dropout=lora_dropout, init_lora_weights=init_lora_weights, use_rslora=use_rslora, use_dora=use_dora, lora_bias=lora_bias, ) def update_layer( self, adapter_name, r, lora_alpha, lora_dropout, init_lora_weights, use_rslora, use_dora, lora_bias ): if r <= 0: raise ValueError(f"`r` should be a positive integer value but the value passed is {r}") self.r[adapter_name] = r self.lora_alpha[adapter_name] = lora_alpha if lora_dropout > 0.0: lora_dropout_layer = nn.Dropout(p=lora_dropout) else: lora_dropout_layer = nn.Identity() self.lora_dropout[adapter_name] = lora_dropout_layer # Actual trainable parameters base_layer = self.get_base_layer() kernel_size = base_layer.kernel_size stride = base_layer.stride padding = base_layer.padding conv_layer = type(base_layer) out_kernel = out_stride = (1,) * (self._kernel_dim - 2) self.lora_A[adapter_name] = conv_layer(self.in_features, r, kernel_size, stride, padding, bias=False) self.lora_B[adapter_name] = conv_layer(r, self.out_features, out_kernel, out_stride, bias=lora_bias) self.lora_bias[adapter_name] = lora_bias if use_rslora: self.scaling[adapter_name] = lora_alpha / math.sqrt(r) else: self.scaling[adapter_name] = lora_alpha / r if init_lora_weights == "loftq": self.loftq_init(adapter_name) elif init_lora_weights: self.reset_lora_parameters(adapter_name, init_lora_weights) # call this before dora_init self._move_adapter_to_device_of_base_layer(adapter_name) if use_dora: self.dora_init(adapter_name) self.use_dora[adapter_name] = True else: self.use_dora[adapter_name] = False self.set_adapter(self.active_adapters) def _get_dora_factor_view(self): return (-1,) + (1,) * (self._kernel_dim - 1) def dora_init(self, adapter_name: str) -> None: if self.lora_magnitude_vector is None: # first dora layer being added, add lora_magnitude_vector to the list of learnable parameters self.adapter_layer_names = self.adapter_layer_names[:] + ("lora_magnitude_vector",) dora_layer_class = self._get_dora_layer_class() dora_layer = dora_layer_class(fan_in_fan_out=False) lora_A = self.lora_A[adapter_name].weight lora_B = self.lora_B[adapter_name].weight scaling = self.scaling[adapter_name] dora_layer.update_layer(base_layer=self.get_base_layer(), lora_A=lora_A, lora_B=lora_B, scaling=scaling) self.lora_magnitude_vector[adapter_name] = dora_layer def _get_dora_layer_class(self) -> type[_DoraConvNdLayer]: # Subclasses should override this method to return the appropriate DoraLayer class raise NotImplementedError def merge(self, safe_merge: bool = False, adapter_names: Optional[list[str]] = None) -> None: """ Merge the active adapter weights inside the base weights Args: safe_merge (`bool`, *optional*): If True, the merge operation will be performed in a copy of the original weights and check for NaNs before merging the weights. This is useful if you want to check if the merge operation will produce NaNs. Defaults to `False`. adapter_names (`list[str]`, *optional*): The list of adapter names that should be merged. If None, all active adapters will be merged. Defaults to `None`. """ adapter_names = check_adapters_to_merge(self, adapter_names) if not adapter_names: # no adapter to merge return for active_adapter in adapter_names: if active_adapter in self.lora_A.keys(): base_layer = self.get_base_layer() if safe_merge: # Note that safe_merge will be slower than the normal merge # because of the copy operation. orig_weights = base_layer.weight.data.clone() delta_weight = self.get_delta_weight(active_adapter) if not self.use_dora[active_adapter]: orig_weights += delta_weight else: # handle dora # since delta_weight already includes scaling, set it to 1 here weight_norm = ( self.lora_magnitude_vector[active_adapter] .get_weight_norm(orig_weights, delta_weight, scaling=1) .detach() ) # We need to cache weight_norm because it has to be based on the original weights. We # cannot calculate it on the fly based on the merged weights when unmerging because its a # different value self._cache_store(f"{active_adapter}-weight_norm", weight_norm) dora_factor = self.lora_magnitude_vector[active_adapter].weight / weight_norm orig_weights = dora_factor.view(*self._get_dora_factor_view()) * (orig_weights + delta_weight) if not torch.isfinite(orig_weights).all(): raise ValueError( f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken" ) base_layer.weight.data = orig_weights if self.lora_bias[active_adapter]: new_bias = base_layer.bias + self.lora_B[active_adapter].bias if not torch.isfinite(new_bias).all(): raise ValueError( f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken" ) base_layer.bias.data = new_bias else: delta_weight = self.get_delta_weight(active_adapter) if not self.use_dora[active_adapter]: base_layer.weight.data += delta_weight else: # handle dora # since delta_weight already includes scaling, set it to 1 here weight_norm = ( self.lora_magnitude_vector[active_adapter] .get_weight_norm(base_layer.weight, delta_weight, scaling=1) .detach() ) # We need to cache weight_norm because it has to be based on the original weights. We # cannot calculate it on the fly based on the merged weights when unmerging because its a # different value self._cache_store(f"{active_adapter}-weight_norm", weight_norm) dora_factor = self.lora_magnitude_vector[active_adapter].weight / weight_norm new_weight = dora_factor.view(*self._get_dora_factor_view()) * ( base_layer.weight.data + delta_weight ) base_layer.weight.data = new_weight if self.lora_bias[active_adapter]: base_layer.bias.data += self.lora_B[active_adapter].bias self.merged_adapters.append(active_adapter) def unmerge(self) -> None: """ This method unmerges all merged adapter layers from the base weights. """ if not self.merged: warnings.warn("Already unmerged. Nothing to do.") return while len(self.merged_adapters) > 0: active_adapter = self.merged_adapters.pop() if active_adapter in self.lora_A.keys(): weight = self.get_base_layer().weight delta_weight = self.get_delta_weight(active_adapter) if not self.use_dora[active_adapter]: weight.data -= delta_weight else: weight_norm = self._cache_pop(f"{active_adapter}-weight_norm") dora_factor = self.lora_magnitude_vector[active_adapter].weight / weight_norm weight_orig = weight.data / dora_factor.view(*self._get_dora_factor_view()) - delta_weight weight.data = weight_orig if self.lora_bias[active_adapter]: self.get_base_layer().bias.data -= self.lora_B[active_adapter].bias def get_delta_weight(self, adapter) -> torch.Tensor: """ Compute the delta weight for the given adapter. Args: adapter (str): The name of the adapter for which the delta weight should be computed. """ device = self.lora_B[adapter].weight.device dtype = self.lora_A[adapter].weight.dtype # In case users wants to merge the adapter weights that are in # (b)float16 while being on CPU, we need to cast the weights to float32, perform the merge and then cast back to # (b)float16 because some CPUs have slow bf16/fp16 matmuls. cast_to_fp32 = device.type == "cpu" and (dtype == torch.float16 or dtype == torch.bfloat16) weight_A = self.lora_A[adapter].weight weight_B = self.lora_B[adapter].weight if cast_to_fp32: weight_A = weight_A.float() weight_B = weight_B.float() # https://github.com/bmaltais/kohya_ss/blob/feb6728762a8f463d15ba936d189d4c3abfaa1ab/networks/lora.py#L117 if self.get_base_layer().weight.size()[2:4] == (1, 1): # conv2d 1x1 output_tensor = (weight_B.squeeze(3).squeeze(2) @ weight_A.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze( 3 ) * self.scaling[adapter] else: output_tensor = ( self.conv_fn( weight_A.transpose(0, 1), weight_B, ).transpose(0, 1) * self.scaling[adapter] ) if cast_to_fp32: output_tensor = output_tensor.to(dtype=dtype) # cast back the weights self.lora_A[adapter].weight.data = weight_A.to(dtype) self.lora_B[adapter].weight.data = weight_B.to(dtype) return output_tensor def forward(self, x: torch.Tensor, *args, **kwargs) -> torch.Tensor: self._check_forward_args(x, *args, **kwargs) adapter_names = kwargs.pop("adapter_names", None) if self.disable_adapters: if self.merged: self.unmerge() result = self.base_layer(x, *args, **kwargs) elif adapter_names is not None: result = self._mixed_batch_forward(x, *args, adapter_names=adapter_names, **kwargs) elif self.merged: result = self.base_layer(x, *args, **kwargs) else: result = self.base_layer(x, *args, **kwargs) torch_result_dtype = result.dtype for active_adapter in self.active_adapters: if active_adapter not in self.lora_A.keys(): continue lora_A = self.lora_A[active_adapter] lora_B = self.lora_B[active_adapter] dropout = self.lora_dropout[active_adapter] scaling = self.scaling[active_adapter] x = x.to(lora_A.weight.dtype) if not self.use_dora[active_adapter]: result = result + lora_B(lora_A(dropout(x))) * scaling else: x = dropout(x) result = result + self.lora_magnitude_vector[active_adapter]( x, lora_A=lora_A, lora_B=lora_B, scaling=scaling, base_layer=self.get_base_layer(), ) result = result.to(torch_result_dtype) return result def __repr__(self) -> str: rep = super().__repr__() return "lora." + rep class Conv2d(_ConvNd): # Lora implemented in a conv2d layer def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) if not self._kernel_dim == 4: raise ValueError(f"Conv2d layer kernel must have 4 dimensions, not {self._kernel_dim}") self.conv_fn = F.conv2d def _get_dora_layer_class(self): return DoraConv2dLayer class Conv3d(_ConvNd): # Lora implemented in a conv3d layer def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) if not self._kernel_dim == 5: raise ValueError(f"Conv3d layer kernel must have 5 dimensions, not {self._kernel_dim}") self.conv_fn = F.conv3d def _get_dora_layer_class(self): return DoraConv3dLayer def dispatch_default( target: torch.nn.Module, adapter_name: str, lora_config: LoraConfig, **kwargs, ) -> Optional[torch.nn.Module]: new_module = None if isinstance(target, BaseTunerLayer): target_base_layer = target.get_base_layer() else: target_base_layer = target if isinstance(target_base_layer, torch.nn.Embedding): embedding_kwargs = kwargs.copy() embedding_kwargs.pop("fan_in_fan_out", None) embedding_kwargs.update(lora_config.loftq_config) new_module = Embedding(target, adapter_name, **embedding_kwargs) elif isinstance(target_base_layer, torch.nn.Conv2d): kwargs.update(lora_config.loftq_config) new_module = Conv2d(target, adapter_name, **kwargs) elif isinstance(target_base_layer, torch.nn.Conv3d): kwargs.update(lora_config.loftq_config) new_module = Conv3d(target, adapter_name, **kwargs) elif isinstance(target_base_layer, torch.nn.Linear): if kwargs["fan_in_fan_out"]: warnings.warn( "fan_in_fan_out is set to True but the target module is `torch.nn.Linear`. " "Setting fan_in_fan_out to False." ) kwargs["fan_in_fan_out"] = lora_config.fan_in_fan_out = False kwargs.update(lora_config.loftq_config) new_module = Linear(target, adapter_name, **kwargs) elif isinstance(target_base_layer, Conv1D): if not kwargs["fan_in_fan_out"]: warnings.warn( "fan_in_fan_out is set to False but the target module is `Conv1D`. " "Setting fan_in_fan_out to True." ) kwargs["fan_in_fan_out"] = lora_config.fan_in_fan_out = True kwargs.update(lora_config.loftq_config) new_module = Linear(target, adapter_name, is_target_conv_1d_layer=True, **kwargs) return new_module