diff --git "a/icedit/diffusers/loaders/lora_pipeline.py" "b/icedit/diffusers/loaders/lora_pipeline.py"
new file mode 100644--- /dev/null
+++ "b/icedit/diffusers/loaders/lora_pipeline.py"
@@ -0,0 +1,3812 @@
+# Copyright 2024 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import os
+from typing import Callable, Dict, List, Optional, Union
+
+import torch
+from huggingface_hub.utils import validate_hf_hub_args
+
+from ..utils import (
+    USE_PEFT_BACKEND,
+    deprecate,
+    get_submodule_by_name,
+    is_peft_available,
+    is_peft_version,
+    is_torch_version,
+    is_transformers_available,
+    is_transformers_version,
+    logging,
+)
+from .lora_base import (  # noqa
+    LORA_WEIGHT_NAME,
+    LORA_WEIGHT_NAME_SAFE,
+    LoraBaseMixin,
+    _fetch_state_dict,
+    _load_lora_into_text_encoder,
+)
+from .lora_conversion_utils import (
+    _convert_bfl_flux_control_lora_to_diffusers,
+    _convert_hunyuan_video_lora_to_diffusers,
+    _convert_kohya_flux_lora_to_diffusers,
+    _convert_non_diffusers_lora_to_diffusers,
+    _convert_xlabs_flux_lora_to_diffusers,
+    _maybe_map_sgm_blocks_to_diffusers,
+)
+
+
+_LOW_CPU_MEM_USAGE_DEFAULT_LORA = False
+if is_torch_version(">=", "1.9.0"):
+    if (
+        is_peft_available()
+        and is_peft_version(">=", "0.13.1")
+        and is_transformers_available()
+        and is_transformers_version(">", "4.45.2")
+    ):
+        _LOW_CPU_MEM_USAGE_DEFAULT_LORA = True
+
+
+logger = logging.get_logger(__name__)
+
+TEXT_ENCODER_NAME = "text_encoder"
+UNET_NAME = "unet"
+TRANSFORMER_NAME = "transformer"
+
+_MODULE_NAME_TO_ATTRIBUTE_MAP_FLUX = {"x_embedder": "in_channels"}
+
+
+class StableDiffusionLoraLoaderMixin(LoraBaseMixin):
+    r"""
+    Load LoRA layers into Stable Diffusion [`UNet2DConditionModel`] and
+    [`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel).
+    """
+
+    _lora_loadable_modules = ["unet", "text_encoder"]
+    unet_name = UNET_NAME
+    text_encoder_name = TEXT_ENCODER_NAME
+
+    def load_lora_weights(
+        self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], adapter_name=None, **kwargs
+    ):
+        """
+        Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.unet` and
+        `self.text_encoder`.
+
+        All kwargs are forwarded to `self.lora_state_dict`.
+
+        See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is
+        loaded.
+
+        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_unet`] for more details on how the state dict is
+        loaded into `self.unet`.
+
+        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder`] for more details on how the state
+        dict is loaded into `self.text_encoder`.
+
+        Parameters:
+            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
+                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
+            adapter_name (`str`, *optional*):
+                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
+                `default_{i}` where i is the total number of adapters being loaded.
+            low_cpu_mem_usage (`bool`, *optional*):
+                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
+                weights.
+            kwargs (`dict`, *optional*):
+                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
+        """
+        if not USE_PEFT_BACKEND:
+            raise ValueError("PEFT backend is required for this method.")
+
+        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
+        if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"):
+            raise ValueError(
+                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
+            )
+
+        # if a dict is passed, copy it instead of modifying it inplace
+        if isinstance(pretrained_model_name_or_path_or_dict, dict):
+            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()
+
+        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
+        state_dict, network_alphas = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
+
+        is_correct_format = all("lora" in key for key in state_dict.keys())
+        if not is_correct_format:
+            raise ValueError("Invalid LoRA checkpoint.")
+
+        self.load_lora_into_unet(
+            state_dict,
+            network_alphas=network_alphas,
+            unet=getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet,
+            adapter_name=adapter_name,
+            _pipeline=self,
+            low_cpu_mem_usage=low_cpu_mem_usage,
+        )
+        self.load_lora_into_text_encoder(
+            state_dict,
+            network_alphas=network_alphas,
+            text_encoder=getattr(self, self.text_encoder_name)
+            if not hasattr(self, "text_encoder")
+            else self.text_encoder,
+            lora_scale=self.lora_scale,
+            adapter_name=adapter_name,
+            _pipeline=self,
+            low_cpu_mem_usage=low_cpu_mem_usage,
+        )
+
+    @classmethod
+    @validate_hf_hub_args
+    def lora_state_dict(
+        cls,
+        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
+        **kwargs,
+    ):
+        r"""
+        Return state dict for lora weights and the network alphas.
+
+        <Tip warning={true}>
+
+        We support loading A1111 formatted LoRA checkpoints in a limited capacity.
+
+        This function is experimental and might change in the future.
+
+        </Tip>
+
+        Parameters:
+            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
+                Can be either:
+
+                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
+                      the Hub.
+                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
+                      with [`ModelMixin.save_pretrained`].
+                    - A [torch state
+                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
+
+            cache_dir (`Union[str, os.PathLike]`, *optional*):
+                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
+                is not used.
+            force_download (`bool`, *optional*, defaults to `False`):
+                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
+                cached versions if they exist.
+
+            proxies (`Dict[str, str]`, *optional*):
+                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
+                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
+            local_files_only (`bool`, *optional*, defaults to `False`):
+                Whether to only load local model weights and configuration files or not. If set to `True`, the model
+                won't be downloaded from the Hub.
+            token (`str` or *bool*, *optional*):
+                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
+                `diffusers-cli login` (stored in `~/.huggingface`) is used.
+            revision (`str`, *optional*, defaults to `"main"`):
+                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
+                allowed by Git.
+            subfolder (`str`, *optional*, defaults to `""`):
+                The subfolder location of a model file within a larger model repository on the Hub or locally.
+            weight_name (`str`, *optional*, defaults to None):
+                Name of the serialized state dict file.
+        """
+        # Load the main state dict first which has the LoRA layers for either of
+        # UNet and text encoder or both.
+        cache_dir = kwargs.pop("cache_dir", None)
+        force_download = kwargs.pop("force_download", False)
+        proxies = kwargs.pop("proxies", None)
+        local_files_only = kwargs.pop("local_files_only", None)
+        token = kwargs.pop("token", None)
+        revision = kwargs.pop("revision", None)
+        subfolder = kwargs.pop("subfolder", None)
+        weight_name = kwargs.pop("weight_name", None)
+        unet_config = kwargs.pop("unet_config", None)
+        use_safetensors = kwargs.pop("use_safetensors", None)
+
+        allow_pickle = False
+        if use_safetensors is None:
+            use_safetensors = True
+            allow_pickle = True
+
+        user_agent = {
+            "file_type": "attn_procs_weights",
+            "framework": "pytorch",
+        }
+
+        state_dict = _fetch_state_dict(
+            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
+            weight_name=weight_name,
+            use_safetensors=use_safetensors,
+            local_files_only=local_files_only,
+            cache_dir=cache_dir,
+            force_download=force_download,
+            proxies=proxies,
+            token=token,
+            revision=revision,
+            subfolder=subfolder,
+            user_agent=user_agent,
+            allow_pickle=allow_pickle,
+        )
+        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
+        if is_dora_scale_present:
+            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
+            logger.warning(warn_msg)
+            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}
+
+        network_alphas = None
+        # TODO: replace it with a method from `state_dict_utils`
+        if all(
+            (
+                k.startswith("lora_te_")
+                or k.startswith("lora_unet_")
+                or k.startswith("lora_te1_")
+                or k.startswith("lora_te2_")
+            )
+            for k in state_dict.keys()
+        ):
+            # Map SDXL blocks correctly.
+            if unet_config is not None:
+                # use unet config to remap block numbers
+                state_dict = _maybe_map_sgm_blocks_to_diffusers(state_dict, unet_config)
+            state_dict, network_alphas = _convert_non_diffusers_lora_to_diffusers(state_dict)
+
+        return state_dict, network_alphas
+
+    @classmethod
+    def load_lora_into_unet(
+        cls, state_dict, network_alphas, unet, adapter_name=None, _pipeline=None, low_cpu_mem_usage=False
+    ):
+        """
+        This will load the LoRA layers specified in `state_dict` into `unet`.
+
+        Parameters:
+            state_dict (`dict`):
+                A standard state dict containing the lora layer parameters. The keys can either be indexed directly
+                into the unet or prefixed with an additional `unet` which can be used to distinguish between text
+                encoder lora layers.
+            network_alphas (`Dict[str, float]`):
+                The value of the network alpha used for stable learning and preventing underflow. This value has the
+                same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
+                link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
+            unet (`UNet2DConditionModel`):
+                The UNet model to load the LoRA layers into.
+            adapter_name (`str`, *optional*):
+                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
+                `default_{i}` where i is the total number of adapters being loaded.
+            low_cpu_mem_usage (`bool`, *optional*):
+                Speed up model loading only loading the pretrained LoRA weights and not initializing the random
+                weights.
+        """
+        if not USE_PEFT_BACKEND:
+            raise ValueError("PEFT backend is required for this method.")
+
+        if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"):
+            raise ValueError(
+                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
+            )
+
+        # If the serialization format is new (introduced in https://github.com/huggingface/diffusers/pull/2918),
+        # then the `state_dict` keys should have `cls.unet_name` and/or `cls.text_encoder_name` as
+        # their prefixes.
+        keys = list(state_dict.keys())
+        only_text_encoder = all(key.startswith(cls.text_encoder_name) for key in keys)
+        if not only_text_encoder:
+            # Load the layers corresponding to UNet.
+            logger.info(f"Loading {cls.unet_name}.")
+            unet.load_lora_adapter(
+                state_dict,
+                prefix=cls.unet_name,
+                network_alphas=network_alphas,
+                adapter_name=adapter_name,
+                _pipeline=_pipeline,
+                low_cpu_mem_usage=low_cpu_mem_usage,
+            )
+
+    @classmethod
+    def load_lora_into_text_encoder(
+        cls,
+        state_dict,
+        network_alphas,
+        text_encoder,
+        prefix=None,
+        lora_scale=1.0,
+        adapter_name=None,
+        _pipeline=None,
+        low_cpu_mem_usage=False,
+    ):
+        """
+        This will load the LoRA layers specified in `state_dict` into `text_encoder`
+
+        Parameters:
+            state_dict (`dict`):
+                A standard state dict containing the lora layer parameters. The key should be prefixed with an
+                additional `text_encoder` to distinguish between unet lora layers.
+            network_alphas (`Dict[str, float]`):
+                The value of the network alpha used for stable learning and preventing underflow. This value has the
+                same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
+                link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
+            text_encoder (`CLIPTextModel`):
+                The text encoder model to load the LoRA layers into.
+            prefix (`str`):
+                Expected prefix of the `text_encoder` in the `state_dict`.
+            lora_scale (`float`):
+                How much to scale the output of the lora linear layer before it is added with the output of the regular
+                lora layer.
+            adapter_name (`str`, *optional*):
+                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
+                `default_{i}` where i is the total number of adapters being loaded.
+            low_cpu_mem_usage (`bool`, *optional*):
+                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
+                weights.
+        """
+        _load_lora_into_text_encoder(
+            state_dict=state_dict,
+            network_alphas=network_alphas,
+            lora_scale=lora_scale,
+            text_encoder=text_encoder,
+            prefix=prefix,
+            text_encoder_name=cls.text_encoder_name,
+            adapter_name=adapter_name,
+            _pipeline=_pipeline,
+            low_cpu_mem_usage=low_cpu_mem_usage,
+        )
+
+    @classmethod
+    def save_lora_weights(
+        cls,
+        save_directory: Union[str, os.PathLike],
+        unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
+        text_encoder_lora_layers: Dict[str, torch.nn.Module] = None,
+        is_main_process: bool = True,
+        weight_name: str = None,
+        save_function: Callable = None,
+        safe_serialization: bool = True,
+    ):
+        r"""
+        Save the LoRA parameters corresponding to the UNet and text encoder.
+
+        Arguments:
+            save_directory (`str` or `os.PathLike`):
+                Directory to save LoRA parameters to. Will be created if it doesn't exist.
+            unet_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
+                State dict of the LoRA layers corresponding to the `unet`.
+            text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
+                State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text
+                encoder LoRA state dict because it comes from 🤗 Transformers.
+            is_main_process (`bool`, *optional*, defaults to `True`):
+                Whether the process calling this is the main process or not. Useful during distributed training and you
+                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
+                process to avoid race conditions.
+            save_function (`Callable`):
+                The function to use to save the state dictionary. Useful during distributed training when you need to
+                replace `torch.save` with another method. Can be configured with the environment variable
+                `DIFFUSERS_SAVE_MODE`.
+            safe_serialization (`bool`, *optional*, defaults to `True`):
+                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
+        """
+        state_dict = {}
+
+        if not (unet_lora_layers or text_encoder_lora_layers):
+            raise ValueError("You must pass at least one of `unet_lora_layers` and `text_encoder_lora_layers`.")
+
+        if unet_lora_layers:
+            state_dict.update(cls.pack_weights(unet_lora_layers, cls.unet_name))
+
+        if text_encoder_lora_layers:
+            state_dict.update(cls.pack_weights(text_encoder_lora_layers, cls.text_encoder_name))
+
+        # Save the model
+        cls.write_lora_layers(
+            state_dict=state_dict,
+            save_directory=save_directory,
+            is_main_process=is_main_process,
+            weight_name=weight_name,
+            save_function=save_function,
+            safe_serialization=safe_serialization,
+        )
+
+    def fuse_lora(
+        self,
+        components: List[str] = ["unet", "text_encoder"],
+        lora_scale: float = 1.0,
+        safe_fusing: bool = False,
+        adapter_names: Optional[List[str]] = None,
+        **kwargs,
+    ):
+        r"""
+        Fuses the LoRA parameters into the original parameters of the corresponding blocks.
+
+        <Tip warning={true}>
+
+        This is an experimental API.
+
+        </Tip>
+
+        Args:
+            components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into.
+            lora_scale (`float`, defaults to 1.0):
+                Controls how much to influence the outputs with the LoRA parameters.
+            safe_fusing (`bool`, defaults to `False`):
+                Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them.
+            adapter_names (`List[str]`, *optional*):
+                Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused.
+
+        Example:
+
+        ```py
+        from diffusers import DiffusionPipeline
+        import torch
+
+        pipeline = DiffusionPipeline.from_pretrained(
+            "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
+        ).to("cuda")
+        pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
+        pipeline.fuse_lora(lora_scale=0.7)
+        ```
+        """
+        super().fuse_lora(
+            components=components, lora_scale=lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names
+        )
+
+    def unfuse_lora(self, components: List[str] = ["unet", "text_encoder"], **kwargs):
+        r"""
+        Reverses the effect of
+        [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora).
+
+        <Tip warning={true}>
+
+        This is an experimental API.
+
+        </Tip>
+
+        Args:
+            components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from.
+            unfuse_unet (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters.
+            unfuse_text_encoder (`bool`, defaults to `True`):
+                Whether to unfuse the text encoder LoRA parameters. If the text encoder wasn't monkey-patched with the
+                LoRA parameters then it won't have any effect.
+        """
+        super().unfuse_lora(components=components)
+
+
+class StableDiffusionXLLoraLoaderMixin(LoraBaseMixin):
+    r"""
+    Load LoRA layers into Stable Diffusion XL [`UNet2DConditionModel`],
+    [`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), and
+    [`CLIPTextModelWithProjection`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection).
+    """
+
+    _lora_loadable_modules = ["unet", "text_encoder", "text_encoder_2"]
+    unet_name = UNET_NAME
+    text_encoder_name = TEXT_ENCODER_NAME
+
+    def load_lora_weights(
+        self,
+        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
+        adapter_name: Optional[str] = None,
+        **kwargs,
+    ):
+        """
+        Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.unet` and
+        `self.text_encoder`.
+
+        All kwargs are forwarded to `self.lora_state_dict`.
+
+        See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is
+        loaded.
+
+        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_unet`] for more details on how the state dict is
+        loaded into `self.unet`.
+
+        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder`] for more details on how the state
+        dict is loaded into `self.text_encoder`.
+
+        Parameters:
+            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
+                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
+            adapter_name (`str`, *optional*):
+                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
+                `default_{i}` where i is the total number of adapters being loaded.
+            low_cpu_mem_usage (`bool`, *optional*):
+                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
+                weights.
+            kwargs (`dict`, *optional*):
+                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
+        """
+        if not USE_PEFT_BACKEND:
+            raise ValueError("PEFT backend is required for this method.")
+
+        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
+        if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"):
+            raise ValueError(
+                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
+            )
+
+        # We could have accessed the unet config from `lora_state_dict()` too. We pass
+        # it here explicitly to be able to tell that it's coming from an SDXL
+        # pipeline.
+
+        # if a dict is passed, copy it instead of modifying it inplace
+        if isinstance(pretrained_model_name_or_path_or_dict, dict):
+            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()
+
+        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
+        state_dict, network_alphas = self.lora_state_dict(
+            pretrained_model_name_or_path_or_dict,
+            unet_config=self.unet.config,
+            **kwargs,
+        )
+
+        is_correct_format = all("lora" in key for key in state_dict.keys())
+        if not is_correct_format:
+            raise ValueError("Invalid LoRA checkpoint.")
+
+        self.load_lora_into_unet(
+            state_dict,
+            network_alphas=network_alphas,
+            unet=self.unet,
+            adapter_name=adapter_name,
+            _pipeline=self,
+            low_cpu_mem_usage=low_cpu_mem_usage,
+        )
+        text_encoder_state_dict = {k: v for k, v in state_dict.items() if "text_encoder." in k}
+        if len(text_encoder_state_dict) > 0:
+            self.load_lora_into_text_encoder(
+                text_encoder_state_dict,
+                network_alphas=network_alphas,
+                text_encoder=self.text_encoder,
+                prefix="text_encoder",
+                lora_scale=self.lora_scale,
+                adapter_name=adapter_name,
+                _pipeline=self,
+                low_cpu_mem_usage=low_cpu_mem_usage,
+            )
+
+        text_encoder_2_state_dict = {k: v for k, v in state_dict.items() if "text_encoder_2." in k}
+        if len(text_encoder_2_state_dict) > 0:
+            self.load_lora_into_text_encoder(
+                text_encoder_2_state_dict,
+                network_alphas=network_alphas,
+                text_encoder=self.text_encoder_2,
+                prefix="text_encoder_2",
+                lora_scale=self.lora_scale,
+                adapter_name=adapter_name,
+                _pipeline=self,
+                low_cpu_mem_usage=low_cpu_mem_usage,
+            )
+
+    @classmethod
+    @validate_hf_hub_args
+    # Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.lora_state_dict
+    def lora_state_dict(
+        cls,
+        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
+        **kwargs,
+    ):
+        r"""
+        Return state dict for lora weights and the network alphas.
+
+        <Tip warning={true}>
+
+        We support loading A1111 formatted LoRA checkpoints in a limited capacity.
+
+        This function is experimental and might change in the future.
+
+        </Tip>
+
+        Parameters:
+            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
+                Can be either:
+
+                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
+                      the Hub.
+                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
+                      with [`ModelMixin.save_pretrained`].
+                    - A [torch state
+                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
+
+            cache_dir (`Union[str, os.PathLike]`, *optional*):
+                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
+                is not used.
+            force_download (`bool`, *optional*, defaults to `False`):
+                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
+                cached versions if they exist.
+
+            proxies (`Dict[str, str]`, *optional*):
+                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
+                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
+            local_files_only (`bool`, *optional*, defaults to `False`):
+                Whether to only load local model weights and configuration files or not. If set to `True`, the model
+                won't be downloaded from the Hub.
+            token (`str` or *bool*, *optional*):
+                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
+                `diffusers-cli login` (stored in `~/.huggingface`) is used.
+            revision (`str`, *optional*, defaults to `"main"`):
+                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
+                allowed by Git.
+            subfolder (`str`, *optional*, defaults to `""`):
+                The subfolder location of a model file within a larger model repository on the Hub or locally.
+            weight_name (`str`, *optional*, defaults to None):
+                Name of the serialized state dict file.
+        """
+        # Load the main state dict first which has the LoRA layers for either of
+        # UNet and text encoder or both.
+        cache_dir = kwargs.pop("cache_dir", None)
+        force_download = kwargs.pop("force_download", False)
+        proxies = kwargs.pop("proxies", None)
+        local_files_only = kwargs.pop("local_files_only", None)
+        token = kwargs.pop("token", None)
+        revision = kwargs.pop("revision", None)
+        subfolder = kwargs.pop("subfolder", None)
+        weight_name = kwargs.pop("weight_name", None)
+        unet_config = kwargs.pop("unet_config", None)
+        use_safetensors = kwargs.pop("use_safetensors", None)
+
+        allow_pickle = False
+        if use_safetensors is None:
+            use_safetensors = True
+            allow_pickle = True
+
+        user_agent = {
+            "file_type": "attn_procs_weights",
+            "framework": "pytorch",
+        }
+
+        state_dict = _fetch_state_dict(
+            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
+            weight_name=weight_name,
+            use_safetensors=use_safetensors,
+            local_files_only=local_files_only,
+            cache_dir=cache_dir,
+            force_download=force_download,
+            proxies=proxies,
+            token=token,
+            revision=revision,
+            subfolder=subfolder,
+            user_agent=user_agent,
+            allow_pickle=allow_pickle,
+        )
+        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
+        if is_dora_scale_present:
+            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
+            logger.warning(warn_msg)
+            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}
+
+        network_alphas = None
+        # TODO: replace it with a method from `state_dict_utils`
+        if all(
+            (
+                k.startswith("lora_te_")
+                or k.startswith("lora_unet_")
+                or k.startswith("lora_te1_")
+                or k.startswith("lora_te2_")
+            )
+            for k in state_dict.keys()
+        ):
+            # Map SDXL blocks correctly.
+            if unet_config is not None:
+                # use unet config to remap block numbers
+                state_dict = _maybe_map_sgm_blocks_to_diffusers(state_dict, unet_config)
+            state_dict, network_alphas = _convert_non_diffusers_lora_to_diffusers(state_dict)
+
+        return state_dict, network_alphas
+
+    @classmethod
+    # Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.load_lora_into_unet
+    def load_lora_into_unet(
+        cls, state_dict, network_alphas, unet, adapter_name=None, _pipeline=None, low_cpu_mem_usage=False
+    ):
+        """
+        This will load the LoRA layers specified in `state_dict` into `unet`.
+
+        Parameters:
+            state_dict (`dict`):
+                A standard state dict containing the lora layer parameters. The keys can either be indexed directly
+                into the unet or prefixed with an additional `unet` which can be used to distinguish between text
+                encoder lora layers.
+            network_alphas (`Dict[str, float]`):
+                The value of the network alpha used for stable learning and preventing underflow. This value has the
+                same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
+                link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
+            unet (`UNet2DConditionModel`):
+                The UNet model to load the LoRA layers into.
+            adapter_name (`str`, *optional*):
+                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
+                `default_{i}` where i is the total number of adapters being loaded.
+            low_cpu_mem_usage (`bool`, *optional*):
+                Speed up model loading only loading the pretrained LoRA weights and not initializing the random
+                weights.
+        """
+        if not USE_PEFT_BACKEND:
+            raise ValueError("PEFT backend is required for this method.")
+
+        if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"):
+            raise ValueError(
+                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
+            )
+
+        # If the serialization format is new (introduced in https://github.com/huggingface/diffusers/pull/2918),
+        # then the `state_dict` keys should have `cls.unet_name` and/or `cls.text_encoder_name` as
+        # their prefixes.
+        keys = list(state_dict.keys())
+        only_text_encoder = all(key.startswith(cls.text_encoder_name) for key in keys)
+        if not only_text_encoder:
+            # Load the layers corresponding to UNet.
+            logger.info(f"Loading {cls.unet_name}.")
+            unet.load_lora_adapter(
+                state_dict,
+                prefix=cls.unet_name,
+                network_alphas=network_alphas,
+                adapter_name=adapter_name,
+                _pipeline=_pipeline,
+                low_cpu_mem_usage=low_cpu_mem_usage,
+            )
+
+    @classmethod
+    # Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder
+    def load_lora_into_text_encoder(
+        cls,
+        state_dict,
+        network_alphas,
+        text_encoder,
+        prefix=None,
+        lora_scale=1.0,
+        adapter_name=None,
+        _pipeline=None,
+        low_cpu_mem_usage=False,
+    ):
+        """
+        This will load the LoRA layers specified in `state_dict` into `text_encoder`
+
+        Parameters:
+            state_dict (`dict`):
+                A standard state dict containing the lora layer parameters. The key should be prefixed with an
+                additional `text_encoder` to distinguish between unet lora layers.
+            network_alphas (`Dict[str, float]`):
+                The value of the network alpha used for stable learning and preventing underflow. This value has the
+                same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
+                link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
+            text_encoder (`CLIPTextModel`):
+                The text encoder model to load the LoRA layers into.
+            prefix (`str`):
+                Expected prefix of the `text_encoder` in the `state_dict`.
+            lora_scale (`float`):
+                How much to scale the output of the lora linear layer before it is added with the output of the regular
+                lora layer.
+            adapter_name (`str`, *optional*):
+                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
+                `default_{i}` where i is the total number of adapters being loaded.
+            low_cpu_mem_usage (`bool`, *optional*):
+                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
+                weights.
+        """
+        _load_lora_into_text_encoder(
+            state_dict=state_dict,
+            network_alphas=network_alphas,
+            lora_scale=lora_scale,
+            text_encoder=text_encoder,
+            prefix=prefix,
+            text_encoder_name=cls.text_encoder_name,
+            adapter_name=adapter_name,
+            _pipeline=_pipeline,
+            low_cpu_mem_usage=low_cpu_mem_usage,
+        )
+
+    @classmethod
+    def save_lora_weights(
+        cls,
+        save_directory: Union[str, os.PathLike],
+        unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
+        text_encoder_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
+        text_encoder_2_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
+        is_main_process: bool = True,
+        weight_name: str = None,
+        save_function: Callable = None,
+        safe_serialization: bool = True,
+    ):
+        r"""
+        Save the LoRA parameters corresponding to the UNet and text encoder.
+
+        Arguments:
+            save_directory (`str` or `os.PathLike`):
+                Directory to save LoRA parameters to. Will be created if it doesn't exist.
+            unet_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
+                State dict of the LoRA layers corresponding to the `unet`.
+            text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
+                State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text
+                encoder LoRA state dict because it comes from 🤗 Transformers.
+            text_encoder_2_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
+                State dict of the LoRA layers corresponding to the `text_encoder_2`. Must explicitly pass the text
+                encoder LoRA state dict because it comes from 🤗 Transformers.
+            is_main_process (`bool`, *optional*, defaults to `True`):
+                Whether the process calling this is the main process or not. Useful during distributed training and you
+                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
+                process to avoid race conditions.
+            save_function (`Callable`):
+                The function to use to save the state dictionary. Useful during distributed training when you need to
+                replace `torch.save` with another method. Can be configured with the environment variable
+                `DIFFUSERS_SAVE_MODE`.
+            safe_serialization (`bool`, *optional*, defaults to `True`):
+                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
+        """
+        state_dict = {}
+
+        if not (unet_lora_layers or text_encoder_lora_layers or text_encoder_2_lora_layers):
+            raise ValueError(
+                "You must pass at least one of `unet_lora_layers`, `text_encoder_lora_layers` or `text_encoder_2_lora_layers`."
+            )
+
+        if unet_lora_layers:
+            state_dict.update(cls.pack_weights(unet_lora_layers, "unet"))
+
+        if text_encoder_lora_layers:
+            state_dict.update(cls.pack_weights(text_encoder_lora_layers, "text_encoder"))
+
+        if text_encoder_2_lora_layers:
+            state_dict.update(cls.pack_weights(text_encoder_2_lora_layers, "text_encoder_2"))
+
+        cls.write_lora_layers(
+            state_dict=state_dict,
+            save_directory=save_directory,
+            is_main_process=is_main_process,
+            weight_name=weight_name,
+            save_function=save_function,
+            safe_serialization=safe_serialization,
+        )
+
+    def fuse_lora(
+        self,
+        components: List[str] = ["unet", "text_encoder", "text_encoder_2"],
+        lora_scale: float = 1.0,
+        safe_fusing: bool = False,
+        adapter_names: Optional[List[str]] = None,
+        **kwargs,
+    ):
+        r"""
+        Fuses the LoRA parameters into the original parameters of the corresponding blocks.
+
+        <Tip warning={true}>
+
+        This is an experimental API.
+
+        </Tip>
+
+        Args:
+            components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into.
+            lora_scale (`float`, defaults to 1.0):
+                Controls how much to influence the outputs with the LoRA parameters.
+            safe_fusing (`bool`, defaults to `False`):
+                Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them.
+            adapter_names (`List[str]`, *optional*):
+                Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused.
+
+        Example:
+
+        ```py
+        from diffusers import DiffusionPipeline
+        import torch
+
+        pipeline = DiffusionPipeline.from_pretrained(
+            "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
+        ).to("cuda")
+        pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
+        pipeline.fuse_lora(lora_scale=0.7)
+        ```
+        """
+        super().fuse_lora(
+            components=components, lora_scale=lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names
+        )
+
+    def unfuse_lora(self, components: List[str] = ["unet", "text_encoder", "text_encoder_2"], **kwargs):
+        r"""
+        Reverses the effect of
+        [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora).
+
+        <Tip warning={true}>
+
+        This is an experimental API.
+
+        </Tip>
+
+        Args:
+            components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from.
+            unfuse_unet (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters.
+            unfuse_text_encoder (`bool`, defaults to `True`):
+                Whether to unfuse the text encoder LoRA parameters. If the text encoder wasn't monkey-patched with the
+                LoRA parameters then it won't have any effect.
+        """
+        super().unfuse_lora(components=components)
+
+
+class SD3LoraLoaderMixin(LoraBaseMixin):
+    r"""
+    Load LoRA layers into [`SD3Transformer2DModel`],
+    [`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), and
+    [`CLIPTextModelWithProjection`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection).
+
+    Specific to [`StableDiffusion3Pipeline`].
+    """
+
+    _lora_loadable_modules = ["transformer", "text_encoder", "text_encoder_2"]
+    transformer_name = TRANSFORMER_NAME
+    text_encoder_name = TEXT_ENCODER_NAME
+
+    @classmethod
+    @validate_hf_hub_args
+    def lora_state_dict(
+        cls,
+        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
+        **kwargs,
+    ):
+        r"""
+        Return state dict for lora weights and the network alphas.
+
+        <Tip warning={true}>
+
+        We support loading A1111 formatted LoRA checkpoints in a limited capacity.
+
+        This function is experimental and might change in the future.
+
+        </Tip>
+
+        Parameters:
+            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
+                Can be either:
+
+                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
+                      the Hub.
+                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
+                      with [`ModelMixin.save_pretrained`].
+                    - A [torch state
+                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
+
+            cache_dir (`Union[str, os.PathLike]`, *optional*):
+                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
+                is not used.
+            force_download (`bool`, *optional*, defaults to `False`):
+                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
+                cached versions if they exist.
+
+            proxies (`Dict[str, str]`, *optional*):
+                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
+                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
+            local_files_only (`bool`, *optional*, defaults to `False`):
+                Whether to only load local model weights and configuration files or not. If set to `True`, the model
+                won't be downloaded from the Hub.
+            token (`str` or *bool*, *optional*):
+                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
+                `diffusers-cli login` (stored in `~/.huggingface`) is used.
+            revision (`str`, *optional*, defaults to `"main"`):
+                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
+                allowed by Git.
+            subfolder (`str`, *optional*, defaults to `""`):
+                The subfolder location of a model file within a larger model repository on the Hub or locally.
+
+        """
+        # Load the main state dict first which has the LoRA layers for either of
+        # transformer and text encoder or both.
+        cache_dir = kwargs.pop("cache_dir", None)
+        force_download = kwargs.pop("force_download", False)
+        proxies = kwargs.pop("proxies", None)
+        local_files_only = kwargs.pop("local_files_only", None)
+        token = kwargs.pop("token", None)
+        revision = kwargs.pop("revision", None)
+        subfolder = kwargs.pop("subfolder", None)
+        weight_name = kwargs.pop("weight_name", None)
+        use_safetensors = kwargs.pop("use_safetensors", None)
+
+        allow_pickle = False
+        if use_safetensors is None:
+            use_safetensors = True
+            allow_pickle = True
+
+        user_agent = {
+            "file_type": "attn_procs_weights",
+            "framework": "pytorch",
+        }
+
+        state_dict = _fetch_state_dict(
+            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
+            weight_name=weight_name,
+            use_safetensors=use_safetensors,
+            local_files_only=local_files_only,
+            cache_dir=cache_dir,
+            force_download=force_download,
+            proxies=proxies,
+            token=token,
+            revision=revision,
+            subfolder=subfolder,
+            user_agent=user_agent,
+            allow_pickle=allow_pickle,
+        )
+
+        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
+        if is_dora_scale_present:
+            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
+            logger.warning(warn_msg)
+            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}
+
+        return state_dict
+
+    def load_lora_weights(
+        self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], adapter_name=None, **kwargs
+    ):
+        """
+        Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.unet` and
+        `self.text_encoder`.
+
+        All kwargs are forwarded to `self.lora_state_dict`.
+
+        See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is
+        loaded.
+
+        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state
+        dict is loaded into `self.transformer`.
+
+        Parameters:
+            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
+                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
+            adapter_name (`str`, *optional*):
+                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
+                `default_{i}` where i is the total number of adapters being loaded.
+            low_cpu_mem_usage (`bool`, *optional*):
+                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
+                weights.
+            kwargs (`dict`, *optional*):
+                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
+        """
+        if not USE_PEFT_BACKEND:
+            raise ValueError("PEFT backend is required for this method.")
+
+        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
+        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
+            raise ValueError(
+                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
+            )
+
+        # if a dict is passed, copy it instead of modifying it inplace
+        if isinstance(pretrained_model_name_or_path_or_dict, dict):
+            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()
+
+        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
+        state_dict = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
+
+        is_correct_format = all("lora" in key for key in state_dict.keys())
+        if not is_correct_format:
+            raise ValueError("Invalid LoRA checkpoint.")
+
+        transformer_state_dict = {k: v for k, v in state_dict.items() if "transformer." in k}
+        if len(transformer_state_dict) > 0:
+            self.load_lora_into_transformer(
+                state_dict,
+                transformer=getattr(self, self.transformer_name)
+                if not hasattr(self, "transformer")
+                else self.transformer,
+                adapter_name=adapter_name,
+                _pipeline=self,
+                low_cpu_mem_usage=low_cpu_mem_usage,
+            )
+
+        text_encoder_state_dict = {k: v for k, v in state_dict.items() if "text_encoder." in k}
+        if len(text_encoder_state_dict) > 0:
+            self.load_lora_into_text_encoder(
+                text_encoder_state_dict,
+                network_alphas=None,
+                text_encoder=self.text_encoder,
+                prefix="text_encoder",
+                lora_scale=self.lora_scale,
+                adapter_name=adapter_name,
+                _pipeline=self,
+                low_cpu_mem_usage=low_cpu_mem_usage,
+            )
+
+        text_encoder_2_state_dict = {k: v for k, v in state_dict.items() if "text_encoder_2." in k}
+        if len(text_encoder_2_state_dict) > 0:
+            self.load_lora_into_text_encoder(
+                text_encoder_2_state_dict,
+                network_alphas=None,
+                text_encoder=self.text_encoder_2,
+                prefix="text_encoder_2",
+                lora_scale=self.lora_scale,
+                adapter_name=adapter_name,
+                _pipeline=self,
+                low_cpu_mem_usage=low_cpu_mem_usage,
+            )
+
+    @classmethod
+    def load_lora_into_transformer(
+        cls, state_dict, transformer, adapter_name=None, _pipeline=None, low_cpu_mem_usage=False
+    ):
+        """
+        This will load the LoRA layers specified in `state_dict` into `transformer`.
+
+        Parameters:
+            state_dict (`dict`):
+                A standard state dict containing the lora layer parameters. The keys can either be indexed directly
+                into the unet or prefixed with an additional `unet` which can be used to distinguish between text
+                encoder lora layers.
+            transformer (`SD3Transformer2DModel`):
+                The Transformer model to load the LoRA layers into.
+            adapter_name (`str`, *optional*):
+                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
+                `default_{i}` where i is the total number of adapters being loaded.
+            low_cpu_mem_usage (`bool`, *optional*):
+                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
+                weights.
+        """
+        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
+            raise ValueError(
+                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
+            )
+
+        # Load the layers corresponding to transformer.
+        logger.info(f"Loading {cls.transformer_name}.")
+        transformer.load_lora_adapter(
+            state_dict,
+            network_alphas=None,
+            adapter_name=adapter_name,
+            _pipeline=_pipeline,
+            low_cpu_mem_usage=low_cpu_mem_usage,
+        )
+
+    @classmethod
+    # Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder
+    def load_lora_into_text_encoder(
+        cls,
+        state_dict,
+        network_alphas,
+        text_encoder,
+        prefix=None,
+        lora_scale=1.0,
+        adapter_name=None,
+        _pipeline=None,
+        low_cpu_mem_usage=False,
+    ):
+        """
+        This will load the LoRA layers specified in `state_dict` into `text_encoder`
+
+        Parameters:
+            state_dict (`dict`):
+                A standard state dict containing the lora layer parameters. The key should be prefixed with an
+                additional `text_encoder` to distinguish between unet lora layers.
+            network_alphas (`Dict[str, float]`):
+                The value of the network alpha used for stable learning and preventing underflow. This value has the
+                same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
+                link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
+            text_encoder (`CLIPTextModel`):
+                The text encoder model to load the LoRA layers into.
+            prefix (`str`):
+                Expected prefix of the `text_encoder` in the `state_dict`.
+            lora_scale (`float`):
+                How much to scale the output of the lora linear layer before it is added with the output of the regular
+                lora layer.
+            adapter_name (`str`, *optional*):
+                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
+                `default_{i}` where i is the total number of adapters being loaded.
+            low_cpu_mem_usage (`bool`, *optional*):
+                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
+                weights.
+        """
+        _load_lora_into_text_encoder(
+            state_dict=state_dict,
+            network_alphas=network_alphas,
+            lora_scale=lora_scale,
+            text_encoder=text_encoder,
+            prefix=prefix,
+            text_encoder_name=cls.text_encoder_name,
+            adapter_name=adapter_name,
+            _pipeline=_pipeline,
+            low_cpu_mem_usage=low_cpu_mem_usage,
+        )
+
+    @classmethod
+    def save_lora_weights(
+        cls,
+        save_directory: Union[str, os.PathLike],
+        transformer_lora_layers: Dict[str, torch.nn.Module] = None,
+        text_encoder_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
+        text_encoder_2_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
+        is_main_process: bool = True,
+        weight_name: str = None,
+        save_function: Callable = None,
+        safe_serialization: bool = True,
+    ):
+        r"""
+        Save the LoRA parameters corresponding to the UNet and text encoder.
+
+        Arguments:
+            save_directory (`str` or `os.PathLike`):
+                Directory to save LoRA parameters to. Will be created if it doesn't exist.
+            transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
+                State dict of the LoRA layers corresponding to the `transformer`.
+            text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
+                State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text
+                encoder LoRA state dict because it comes from 🤗 Transformers.
+            text_encoder_2_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
+                State dict of the LoRA layers corresponding to the `text_encoder_2`. Must explicitly pass the text
+                encoder LoRA state dict because it comes from 🤗 Transformers.
+            is_main_process (`bool`, *optional*, defaults to `True`):
+                Whether the process calling this is the main process or not. Useful during distributed training and you
+                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
+                process to avoid race conditions.
+            save_function (`Callable`):
+                The function to use to save the state dictionary. Useful during distributed training when you need to
+                replace `torch.save` with another method. Can be configured with the environment variable
+                `DIFFUSERS_SAVE_MODE`.
+            safe_serialization (`bool`, *optional*, defaults to `True`):
+                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
+        """
+        state_dict = {}
+
+        if not (transformer_lora_layers or text_encoder_lora_layers or text_encoder_2_lora_layers):
+            raise ValueError(
+                "You must pass at least one of `transformer_lora_layers`, `text_encoder_lora_layers`, `text_encoder_2_lora_layers`."
+            )
+
+        if transformer_lora_layers:
+            state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name))
+
+        if text_encoder_lora_layers:
+            state_dict.update(cls.pack_weights(text_encoder_lora_layers, "text_encoder"))
+
+        if text_encoder_2_lora_layers:
+            state_dict.update(cls.pack_weights(text_encoder_2_lora_layers, "text_encoder_2"))
+
+        # Save the model
+        cls.write_lora_layers(
+            state_dict=state_dict,
+            save_directory=save_directory,
+            is_main_process=is_main_process,
+            weight_name=weight_name,
+            save_function=save_function,
+            safe_serialization=safe_serialization,
+        )
+
+    def fuse_lora(
+        self,
+        components: List[str] = ["transformer", "text_encoder", "text_encoder_2"],
+        lora_scale: float = 1.0,
+        safe_fusing: bool = False,
+        adapter_names: Optional[List[str]] = None,
+        **kwargs,
+    ):
+        r"""
+        Fuses the LoRA parameters into the original parameters of the corresponding blocks.
+
+        <Tip warning={true}>
+
+        This is an experimental API.
+
+        </Tip>
+
+        Args:
+            components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into.
+            lora_scale (`float`, defaults to 1.0):
+                Controls how much to influence the outputs with the LoRA parameters.
+            safe_fusing (`bool`, defaults to `False`):
+                Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them.
+            adapter_names (`List[str]`, *optional*):
+                Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused.
+
+        Example:
+
+        ```py
+        from diffusers import DiffusionPipeline
+        import torch
+
+        pipeline = DiffusionPipeline.from_pretrained(
+            "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
+        ).to("cuda")
+        pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
+        pipeline.fuse_lora(lora_scale=0.7)
+        ```
+        """
+        super().fuse_lora(
+            components=components, lora_scale=lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names
+        )
+
+    def unfuse_lora(self, components: List[str] = ["transformer", "text_encoder", "text_encoder_2"], **kwargs):
+        r"""
+        Reverses the effect of
+        [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora).
+
+        <Tip warning={true}>
+
+        This is an experimental API.
+
+        </Tip>
+
+        Args:
+            components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from.
+            unfuse_unet (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters.
+            unfuse_text_encoder (`bool`, defaults to `True`):
+                Whether to unfuse the text encoder LoRA parameters. If the text encoder wasn't monkey-patched with the
+                LoRA parameters then it won't have any effect.
+        """
+        super().unfuse_lora(components=components)
+
+
+class FluxLoraLoaderMixin(LoraBaseMixin):
+    r"""
+    Load LoRA layers into [`FluxTransformer2DModel`],
+    [`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel).
+
+    Specific to [`StableDiffusion3Pipeline`].
+    """
+
+    _lora_loadable_modules = ["transformer", "text_encoder"]
+    transformer_name = TRANSFORMER_NAME
+    text_encoder_name = TEXT_ENCODER_NAME
+    _control_lora_supported_norm_keys = ["norm_q", "norm_k", "norm_added_q", "norm_added_k"]
+
+    @classmethod
+    @validate_hf_hub_args
+    def lora_state_dict(
+        cls,
+        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
+        return_alphas: bool = False,
+        **kwargs,
+    ):
+        r"""
+        Return state dict for lora weights and the network alphas.
+
+        <Tip warning={true}>
+
+        We support loading A1111 formatted LoRA checkpoints in a limited capacity.
+
+        This function is experimental and might change in the future.
+
+        </Tip>
+
+        Parameters:
+            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
+                Can be either:
+
+                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
+                      the Hub.
+                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
+                      with [`ModelMixin.save_pretrained`].
+                    - A [torch state
+                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
+
+            cache_dir (`Union[str, os.PathLike]`, *optional*):
+                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
+                is not used.
+            force_download (`bool`, *optional*, defaults to `False`):
+                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
+                cached versions if they exist.
+
+            proxies (`Dict[str, str]`, *optional*):
+                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
+                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
+            local_files_only (`bool`, *optional*, defaults to `False`):
+                Whether to only load local model weights and configuration files or not. If set to `True`, the model
+                won't be downloaded from the Hub.
+            token (`str` or *bool*, *optional*):
+                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
+                `diffusers-cli login` (stored in `~/.huggingface`) is used.
+            revision (`str`, *optional*, defaults to `"main"`):
+                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
+                allowed by Git.
+            subfolder (`str`, *optional*, defaults to `""`):
+                The subfolder location of a model file within a larger model repository on the Hub or locally.
+
+        """
+        # Load the main state dict first which has the LoRA layers for either of
+        # transformer and text encoder or both.
+        cache_dir = kwargs.pop("cache_dir", None)
+        force_download = kwargs.pop("force_download", False)
+        proxies = kwargs.pop("proxies", None)
+        local_files_only = kwargs.pop("local_files_only", None)
+        token = kwargs.pop("token", None)
+        revision = kwargs.pop("revision", None)
+        subfolder = kwargs.pop("subfolder", None)
+        weight_name = kwargs.pop("weight_name", None)
+        use_safetensors = kwargs.pop("use_safetensors", None)
+
+        allow_pickle = False
+        if use_safetensors is None:
+            use_safetensors = True
+            allow_pickle = True
+
+        user_agent = {
+            "file_type": "attn_procs_weights",
+            "framework": "pytorch",
+        }
+
+        state_dict = _fetch_state_dict(
+            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
+            weight_name=weight_name,
+            use_safetensors=use_safetensors,
+            local_files_only=local_files_only,
+            cache_dir=cache_dir,
+            force_download=force_download,
+            proxies=proxies,
+            token=token,
+            revision=revision,
+            subfolder=subfolder,
+            user_agent=user_agent,
+            allow_pickle=allow_pickle,
+        )
+        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
+        if is_dora_scale_present:
+            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
+            logger.warning(warn_msg)
+            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}
+
+        # TODO (sayakpaul): to a follow-up to clean and try to unify the conditions.
+        is_kohya = any(".lora_down.weight" in k for k in state_dict)
+        if is_kohya:
+            state_dict = _convert_kohya_flux_lora_to_diffusers(state_dict)
+            # Kohya already takes care of scaling the LoRA parameters with alpha.
+            return (state_dict, None) if return_alphas else state_dict
+
+        is_xlabs = any("processor" in k for k in state_dict)
+        if is_xlabs:
+            state_dict = _convert_xlabs_flux_lora_to_diffusers(state_dict)
+            # xlabs doesn't use `alpha`.
+            return (state_dict, None) if return_alphas else state_dict
+
+        is_bfl_control = any("query_norm.scale" in k for k in state_dict)
+        if is_bfl_control:
+            state_dict = _convert_bfl_flux_control_lora_to_diffusers(state_dict)
+            return (state_dict, None) if return_alphas else state_dict
+
+        # For state dicts like
+        # https://huggingface.co/TheLastBen/Jon_Snow_Flux_LoRA
+        keys = list(state_dict.keys())
+        network_alphas = {}
+        for k in keys:
+            if "alpha" in k:
+                alpha_value = state_dict.get(k)
+                if (torch.is_tensor(alpha_value) and torch.is_floating_point(alpha_value)) or isinstance(
+                    alpha_value, float
+                ):
+                    network_alphas[k] = state_dict.pop(k)
+                else:
+                    raise ValueError(
+                        f"The alpha key ({k}) seems to be incorrect. If you think this error is unexpected, please open as issue."
+                    )
+
+        if return_alphas:
+            return state_dict, network_alphas
+        else:
+            return state_dict
+
+    def load_lora_weights(
+        self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], adapter_name=None, **kwargs
+    ):
+        """
+        Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.transformer` and
+        `self.text_encoder`.
+
+        All kwargs are forwarded to `self.lora_state_dict`.
+
+        See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is
+        loaded.
+
+        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state
+        dict is loaded into `self.transformer`.
+
+        Parameters:
+            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
+                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
+            kwargs (`dict`, *optional*):
+                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
+            adapter_name (`str`, *optional*):
+                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
+                `default_{i}` where i is the total number of adapters being loaded.
+            low_cpu_mem_usage (`bool`, *optional*):
+                `Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
+                weights.
+        """
+        if not USE_PEFT_BACKEND:
+            raise ValueError("PEFT backend is required for this method.")
+
+        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
+        if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"):
+            raise ValueError(
+                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
+            )
+
+        # if a dict is passed, copy it instead of modifying it inplace
+        if isinstance(pretrained_model_name_or_path_or_dict, dict):
+            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()
+
+        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
+        state_dict, network_alphas = self.lora_state_dict(
+            pretrained_model_name_or_path_or_dict, return_alphas=True, **kwargs
+        )
+
+        has_lora_keys = any("lora" in key for key in state_dict.keys())
+
+        # Flux Control LoRAs also have norm keys
+        has_norm_keys = any(
+            norm_key in key for key in state_dict.keys() for norm_key in self._control_lora_supported_norm_keys
+        )
+
+        if not (has_lora_keys or has_norm_keys):
+            raise ValueError("Invalid LoRA checkpoint.")
+
+        transformer_lora_state_dict = {
+            k: state_dict.pop(k) for k in list(state_dict.keys()) if "transformer." in k and "lora" in k
+        }
+        transformer_norm_state_dict = {
+            k: state_dict.pop(k)
+            for k in list(state_dict.keys())
+            if "transformer." in k and any(norm_key in k for norm_key in self._control_lora_supported_norm_keys)
+        }
+
+        transformer = getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer
+        has_param_with_expanded_shape = self._maybe_expand_transformer_param_shape_or_error_(
+            transformer, transformer_lora_state_dict, transformer_norm_state_dict
+        )
+
+        if has_param_with_expanded_shape:
+            logger.info(
+                "The LoRA weights contain parameters that have different shapes that expected by the transformer. "
+                "As a result, the state_dict of the transformer has been expanded to match the LoRA parameter shapes. "
+                "To get a comprehensive list of parameter names that were modified, enable debug logging."
+            )
+        transformer_lora_state_dict = self._maybe_expand_lora_state_dict(
+            transformer=transformer, lora_state_dict=transformer_lora_state_dict
+        )
+
+        if len(transformer_lora_state_dict) > 0:
+            self.load_lora_into_transformer(
+                transformer_lora_state_dict,
+                network_alphas=network_alphas,
+                transformer=transformer,
+                adapter_name=adapter_name,
+                _pipeline=self,
+                low_cpu_mem_usage=low_cpu_mem_usage,
+            )
+
+        if len(transformer_norm_state_dict) > 0:
+            transformer._transformer_norm_layers = self._load_norm_into_transformer(
+                transformer_norm_state_dict,
+                transformer=transformer,
+                discard_original_layers=False,
+            )
+
+        text_encoder_state_dict = {k: v for k, v in state_dict.items() if "text_encoder." in k}
+        if len(text_encoder_state_dict) > 0:
+            self.load_lora_into_text_encoder(
+                text_encoder_state_dict,
+                network_alphas=network_alphas,
+                text_encoder=self.text_encoder,
+                prefix="text_encoder",
+                lora_scale=self.lora_scale,
+                adapter_name=adapter_name,
+                _pipeline=self,
+                low_cpu_mem_usage=low_cpu_mem_usage,
+            )
+
+    @classmethod
+    def load_lora_into_transformer(
+        cls, state_dict, network_alphas, transformer, adapter_name=None, _pipeline=None, low_cpu_mem_usage=False
+    ):
+        """
+        This will load the LoRA layers specified in `state_dict` into `transformer`.
+
+        Parameters:
+            state_dict (`dict`):
+                A standard state dict containing the lora layer parameters. The keys can either be indexed directly
+                into the unet or prefixed with an additional `unet` which can be used to distinguish between text
+                encoder lora layers.
+            network_alphas (`Dict[str, float]`):
+                The value of the network alpha used for stable learning and preventing underflow. This value has the
+                same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
+                link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
+            transformer (`FluxTransformer2DModel`):
+                The Transformer model to load the LoRA layers into.
+            adapter_name (`str`, *optional*):
+                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
+                `default_{i}` where i is the total number of adapters being loaded.
+            low_cpu_mem_usage (`bool`, *optional*):
+                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
+                weights.
+        """
+        if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"):
+            raise ValueError(
+                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
+            )
+
+        # Load the layers corresponding to transformer.
+        keys = list(state_dict.keys())
+        transformer_present = any(key.startswith(cls.transformer_name) for key in keys)
+        if transformer_present:
+            logger.info(f"Loading {cls.transformer_name}.")
+            transformer.load_lora_adapter(
+                state_dict,
+                network_alphas=network_alphas,
+                adapter_name=adapter_name,
+                _pipeline=_pipeline,
+                low_cpu_mem_usage=low_cpu_mem_usage,
+            )
+
+    @classmethod
+    def _load_norm_into_transformer(
+        cls,
+        state_dict,
+        transformer,
+        prefix=None,
+        discard_original_layers=False,
+    ) -> Dict[str, torch.Tensor]:
+        # Remove prefix if present
+        prefix = prefix or cls.transformer_name
+        for key in list(state_dict.keys()):
+            if key.split(".")[0] == prefix:
+                state_dict[key[len(f"{prefix}.") :]] = state_dict.pop(key)
+
+        # Find invalid keys
+        transformer_state_dict = transformer.state_dict()
+        transformer_keys = set(transformer_state_dict.keys())
+        state_dict_keys = set(state_dict.keys())
+        extra_keys = list(state_dict_keys - transformer_keys)
+
+        if extra_keys:
+            logger.warning(
+                f"Unsupported keys found in state dict when trying to load normalization layers into the transformer. The following keys will be ignored:\n{extra_keys}."
+            )
+
+        for key in extra_keys:
+            state_dict.pop(key)
+
+        # Save the layers that are going to be overwritten so that unload_lora_weights can work as expected
+        overwritten_layers_state_dict = {}
+        if not discard_original_layers:
+            for key in state_dict.keys():
+                overwritten_layers_state_dict[key] = transformer_state_dict[key].clone()
+
+        logger.info(
+            "The provided state dict contains normalization layers in addition to LoRA layers. The normalization layers will directly update the state_dict of the transformer "
+            'as opposed to the LoRA layers that will co-exist separately until the "fuse_lora()" method is called. That is to say, the normalization layers will always be directly '
+            "fused into the transformer and can only be unfused if `discard_original_layers=True` is passed. This might also have implications when dealing with multiple LoRAs. "
+            "If you notice something unexpected, please open an issue: https://github.com/huggingface/diffusers/issues."
+        )
+
+        # We can't load with strict=True because the current state_dict does not contain all the transformer keys
+        incompatible_keys = transformer.load_state_dict(state_dict, strict=False)
+        unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None)
+
+        # We shouldn't expect to see the supported norm keys here being present in the unexpected keys.
+        if unexpected_keys:
+            if any(norm_key in k for k in unexpected_keys for norm_key in cls._control_lora_supported_norm_keys):
+                raise ValueError(
+                    f"Found {unexpected_keys} as unexpected keys while trying to load norm layers into the transformer."
+                )
+
+        return overwritten_layers_state_dict
+
+    @classmethod
+    # Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder
+    def load_lora_into_text_encoder(
+        cls,
+        state_dict,
+        network_alphas,
+        text_encoder,
+        prefix=None,
+        lora_scale=1.0,
+        adapter_name=None,
+        _pipeline=None,
+        low_cpu_mem_usage=False,
+    ):
+        """
+        This will load the LoRA layers specified in `state_dict` into `text_encoder`
+
+        Parameters:
+            state_dict (`dict`):
+                A standard state dict containing the lora layer parameters. The key should be prefixed with an
+                additional `text_encoder` to distinguish between unet lora layers.
+            network_alphas (`Dict[str, float]`):
+                The value of the network alpha used for stable learning and preventing underflow. This value has the
+                same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
+                link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
+            text_encoder (`CLIPTextModel`):
+                The text encoder model to load the LoRA layers into.
+            prefix (`str`):
+                Expected prefix of the `text_encoder` in the `state_dict`.
+            lora_scale (`float`):
+                How much to scale the output of the lora linear layer before it is added with the output of the regular
+                lora layer.
+            adapter_name (`str`, *optional*):
+                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
+                `default_{i}` where i is the total number of adapters being loaded.
+            low_cpu_mem_usage (`bool`, *optional*):
+                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
+                weights.
+        """
+        _load_lora_into_text_encoder(
+            state_dict=state_dict,
+            network_alphas=network_alphas,
+            lora_scale=lora_scale,
+            text_encoder=text_encoder,
+            prefix=prefix,
+            text_encoder_name=cls.text_encoder_name,
+            adapter_name=adapter_name,
+            _pipeline=_pipeline,
+            low_cpu_mem_usage=low_cpu_mem_usage,
+        )
+
+    @classmethod
+    # Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.save_lora_weights with unet->transformer
+    def save_lora_weights(
+        cls,
+        save_directory: Union[str, os.PathLike],
+        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
+        text_encoder_lora_layers: Dict[str, torch.nn.Module] = None,
+        is_main_process: bool = True,
+        weight_name: str = None,
+        save_function: Callable = None,
+        safe_serialization: bool = True,
+    ):
+        r"""
+        Save the LoRA parameters corresponding to the UNet and text encoder.
+
+        Arguments:
+            save_directory (`str` or `os.PathLike`):
+                Directory to save LoRA parameters to. Will be created if it doesn't exist.
+            transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
+                State dict of the LoRA layers corresponding to the `transformer`.
+            text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
+                State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text
+                encoder LoRA state dict because it comes from 🤗 Transformers.
+            is_main_process (`bool`, *optional*, defaults to `True`):
+                Whether the process calling this is the main process or not. Useful during distributed training and you
+                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
+                process to avoid race conditions.
+            save_function (`Callable`):
+                The function to use to save the state dictionary. Useful during distributed training when you need to
+                replace `torch.save` with another method. Can be configured with the environment variable
+                `DIFFUSERS_SAVE_MODE`.
+            safe_serialization (`bool`, *optional*, defaults to `True`):
+                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
+        """
+        state_dict = {}
+
+        if not (transformer_lora_layers or text_encoder_lora_layers):
+            raise ValueError("You must pass at least one of `transformer_lora_layers` and `text_encoder_lora_layers`.")
+
+        if transformer_lora_layers:
+            state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name))
+
+        if text_encoder_lora_layers:
+            state_dict.update(cls.pack_weights(text_encoder_lora_layers, cls.text_encoder_name))
+
+        # Save the model
+        cls.write_lora_layers(
+            state_dict=state_dict,
+            save_directory=save_directory,
+            is_main_process=is_main_process,
+            weight_name=weight_name,
+            save_function=save_function,
+            safe_serialization=safe_serialization,
+        )
+
+    def fuse_lora(
+        self,
+        components: List[str] = ["transformer"],
+        lora_scale: float = 1.0,
+        safe_fusing: bool = False,
+        adapter_names: Optional[List[str]] = None,
+        **kwargs,
+    ):
+        r"""
+        Fuses the LoRA parameters into the original parameters of the corresponding blocks.
+
+        <Tip warning={true}>
+
+        This is an experimental API.
+
+        </Tip>
+
+        Args:
+            components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into.
+            lora_scale (`float`, defaults to 1.0):
+                Controls how much to influence the outputs with the LoRA parameters.
+            safe_fusing (`bool`, defaults to `False`):
+                Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them.
+            adapter_names (`List[str]`, *optional*):
+                Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused.
+
+        Example:
+
+        ```py
+        from diffusers import DiffusionPipeline
+        import torch
+
+        pipeline = DiffusionPipeline.from_pretrained(
+            "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
+        ).to("cuda")
+        pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
+        pipeline.fuse_lora(lora_scale=0.7)
+        ```
+        """
+
+        transformer = getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer
+        if (
+            hasattr(transformer, "_transformer_norm_layers")
+            and isinstance(transformer._transformer_norm_layers, dict)
+            and len(transformer._transformer_norm_layers.keys()) > 0
+        ):
+            logger.info(
+                "The provided state dict contains normalization layers in addition to LoRA layers. The normalization layers will be directly updated the state_dict of the transformer "
+                "as opposed to the LoRA layers that will co-exist separately until the 'fuse_lora()' method is called. That is to say, the normalization layers will always be directly "
+                "fused into the transformer and can only be unfused if `discard_original_layers=True` is passed."
+            )
+
+        super().fuse_lora(
+            components=components, lora_scale=lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names
+        )
+
+    def unfuse_lora(self, components: List[str] = ["transformer", "text_encoder"], **kwargs):
+        r"""
+        Reverses the effect of
+        [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora).
+
+        <Tip warning={true}>
+
+        This is an experimental API.
+
+        </Tip>
+
+        Args:
+            components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from.
+        """
+        transformer = getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer
+        if hasattr(transformer, "_transformer_norm_layers") and transformer._transformer_norm_layers:
+            transformer.load_state_dict(transformer._transformer_norm_layers, strict=False)
+
+        super().unfuse_lora(components=components)
+
+    # We override this here account for `_transformer_norm_layers` and `_overwritten_params`.
+    def unload_lora_weights(self, reset_to_overwritten_params=False):
+        """
+        Unloads the LoRA parameters.
+
+        Args:
+            reset_to_overwritten_params (`bool`, defaults to `False`): Whether to reset the LoRA-loaded modules
+                to their original params. Refer to the [Flux
+                documentation](https://huggingface.co/docs/diffusers/main/en/api/pipelines/flux) to learn more.
+
+        Examples:
+
+        ```python
+        >>> # Assuming `pipeline` is already loaded with the LoRA parameters.
+        >>> pipeline.unload_lora_weights()
+        >>> ...
+        ```
+        """
+        super().unload_lora_weights()
+
+        transformer = getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer
+        if hasattr(transformer, "_transformer_norm_layers") and transformer._transformer_norm_layers:
+            transformer.load_state_dict(transformer._transformer_norm_layers, strict=False)
+            transformer._transformer_norm_layers = None
+
+        if reset_to_overwritten_params and getattr(transformer, "_overwritten_params", None) is not None:
+            overwritten_params = transformer._overwritten_params
+            module_names = set()
+
+            for param_name in overwritten_params:
+                if param_name.endswith(".weight"):
+                    module_names.add(param_name.replace(".weight", ""))
+
+            for name, module in transformer.named_modules():
+                if isinstance(module, torch.nn.Linear) and name in module_names:
+                    module_weight = module.weight.data
+                    module_bias = module.bias.data if module.bias is not None else None
+                    bias = module_bias is not None
+
+                    parent_module_name, _, current_module_name = name.rpartition(".")
+                    parent_module = transformer.get_submodule(parent_module_name)
+
+                    current_param_weight = overwritten_params[f"{name}.weight"]
+                    in_features, out_features = current_param_weight.shape[1], current_param_weight.shape[0]
+                    with torch.device("meta"):
+                        original_module = torch.nn.Linear(
+                            in_features,
+                            out_features,
+                            bias=bias,
+                            dtype=module_weight.dtype,
+                        )
+
+                    tmp_state_dict = {"weight": current_param_weight}
+                    if module_bias is not None:
+                        tmp_state_dict.update({"bias": overwritten_params[f"{name}.bias"]})
+                    original_module.load_state_dict(tmp_state_dict, assign=True, strict=True)
+                    setattr(parent_module, current_module_name, original_module)
+
+                    del tmp_state_dict
+
+                    if current_module_name in _MODULE_NAME_TO_ATTRIBUTE_MAP_FLUX:
+                        attribute_name = _MODULE_NAME_TO_ATTRIBUTE_MAP_FLUX[current_module_name]
+                        new_value = int(current_param_weight.shape[1])
+                        old_value = getattr(transformer.config, attribute_name)
+                        setattr(transformer.config, attribute_name, new_value)
+                        logger.info(
+                            f"Set the {attribute_name} attribute of the model to {new_value} from {old_value}."
+                        )
+
+    @classmethod
+    def _maybe_expand_transformer_param_shape_or_error_(
+        cls,
+        transformer: torch.nn.Module,
+        lora_state_dict=None,
+        norm_state_dict=None,
+        prefix=None,
+    ) -> bool:
+        """
+        Control LoRA expands the shape of the input layer from (3072, 64) to (3072, 128). This method handles that and
+        generalizes things a bit so that any parameter that needs expansion receives appropriate treatement.
+        """
+        state_dict = {}
+        if lora_state_dict is not None:
+            state_dict.update(lora_state_dict)
+        if norm_state_dict is not None:
+            state_dict.update(norm_state_dict)
+
+        # Remove prefix if present
+        prefix = prefix or cls.transformer_name
+        for key in list(state_dict.keys()):
+            if key.split(".")[0] == prefix:
+                state_dict[key[len(f"{prefix}.") :]] = state_dict.pop(key)
+
+        # Expand transformer parameter shapes if they don't match lora
+        has_param_with_shape_update = False
+        overwritten_params = {}
+
+        is_peft_loaded = getattr(transformer, "peft_config", None) is not None
+        for name, module in transformer.named_modules():
+            if isinstance(module, torch.nn.Linear):
+                module_weight = module.weight.data
+                module_bias = module.bias.data if module.bias is not None else None
+                bias = module_bias is not None
+
+                lora_base_name = name.replace(".base_layer", "") if is_peft_loaded else name
+                lora_A_weight_name = f"{lora_base_name}.lora_A.weight"
+                lora_B_weight_name = f"{lora_base_name}.lora_B.weight"
+                if lora_A_weight_name not in state_dict:
+                    continue
+
+                in_features = state_dict[lora_A_weight_name].shape[1]
+                out_features = state_dict[lora_B_weight_name].shape[0]
+
+                # Model maybe loaded with different quantization schemes which may flatten the params.
+                # `bitsandbytes`, for example, flatten the weights when using 4bit. 8bit bnb models
+                # preserve weight shape.
+                module_weight_shape = cls._calculate_module_shape(model=transformer, base_module=module)
+
+                # This means there's no need for an expansion in the params, so we simply skip.
+                if tuple(module_weight_shape) == (out_features, in_features):
+                    continue
+
+                # TODO (sayakpaul): We still need to consider if the module we're expanding is
+                # quantized and handle it accordingly if that is the case.
+                module_out_features, module_in_features = module_weight.shape
+                debug_message = ""
+                if in_features > module_in_features:
+                    debug_message += (
+                        f'Expanding the nn.Linear input/output features for module="{name}" because the provided LoRA '
+                        f"checkpoint contains higher number of features than expected. The number of input_features will be "
+                        f"expanded from {module_in_features} to {in_features}"
+                    )
+                if out_features > module_out_features:
+                    debug_message += (
+                        ", and the number of output features will be "
+                        f"expanded from {module_out_features} to {out_features}."
+                    )
+                else:
+                    debug_message += "."
+                if debug_message:
+                    logger.debug(debug_message)
+
+                if out_features > module_out_features or in_features > module_in_features:
+                    has_param_with_shape_update = True
+                    parent_module_name, _, current_module_name = name.rpartition(".")
+                    parent_module = transformer.get_submodule(parent_module_name)
+
+                    with torch.device("meta"):
+                        expanded_module = torch.nn.Linear(
+                            in_features, out_features, bias=bias, dtype=module_weight.dtype
+                        )
+                    # Only weights are expanded and biases are not. This is because only the input dimensions
+                    # are changed while the output dimensions remain the same. The shape of the weight tensor
+                    # is (out_features, in_features), while the shape of bias tensor is (out_features,), which
+                    # explains the reason why only weights are expanded.
+                    new_weight = torch.zeros_like(
+                        expanded_module.weight.data, device=module_weight.device, dtype=module_weight.dtype
+                    )
+                    slices = tuple(slice(0, dim) for dim in module_weight.shape)
+                    new_weight[slices] = module_weight
+                    tmp_state_dict = {"weight": new_weight}
+                    if module_bias is not None:
+                        tmp_state_dict["bias"] = module_bias
+                    expanded_module.load_state_dict(tmp_state_dict, strict=True, assign=True)
+
+                    setattr(parent_module, current_module_name, expanded_module)
+
+                    del tmp_state_dict
+
+                    if current_module_name in _MODULE_NAME_TO_ATTRIBUTE_MAP_FLUX:
+                        attribute_name = _MODULE_NAME_TO_ATTRIBUTE_MAP_FLUX[current_module_name]
+                        new_value = int(expanded_module.weight.data.shape[1])
+                        old_value = getattr(transformer.config, attribute_name)
+                        setattr(transformer.config, attribute_name, new_value)
+                        logger.info(
+                            f"Set the {attribute_name} attribute of the model to {new_value} from {old_value}."
+                        )
+
+                    # For `unload_lora_weights()`.
+                    # TODO: this could lead to more memory overhead if the number of overwritten params
+                    # are large. Should be revisited later and tackled through a `discard_original_layers` arg.
+                    overwritten_params[f"{current_module_name}.weight"] = module_weight
+                    if module_bias is not None:
+                        overwritten_params[f"{current_module_name}.bias"] = module_bias
+
+        if len(overwritten_params) > 0:
+            transformer._overwritten_params = overwritten_params
+
+        return has_param_with_shape_update
+
+    @classmethod
+    def _maybe_expand_lora_state_dict(cls, transformer, lora_state_dict):
+        expanded_module_names = set()
+        transformer_state_dict = transformer.state_dict()
+        prefix = f"{cls.transformer_name}."
+
+        lora_module_names = [
+            key[: -len(".lora_A.weight")] for key in lora_state_dict if key.endswith(".lora_A.weight")
+        ]
+        lora_module_names = [name[len(prefix) :] for name in lora_module_names if name.startswith(prefix)]
+        lora_module_names = sorted(set(lora_module_names))
+        transformer_module_names = sorted({name for name, _ in transformer.named_modules()})
+        unexpected_modules = set(lora_module_names) - set(transformer_module_names)
+        if unexpected_modules:
+            logger.debug(f"Found unexpected modules: {unexpected_modules}. These will be ignored.")
+
+        is_peft_loaded = getattr(transformer, "peft_config", None) is not None
+        for k in lora_module_names:
+            if k in unexpected_modules:
+                continue
+
+            base_param_name = (
+                f"{k.replace(prefix, '')}.base_layer.weight"
+                if is_peft_loaded and f"{k.replace(prefix, '')}.base_layer.weight" in transformer_state_dict
+                else f"{k.replace(prefix, '')}.weight"
+            )
+            base_weight_param = transformer_state_dict[base_param_name]
+            lora_A_param = lora_state_dict[f"{prefix}{k}.lora_A.weight"]
+
+            # TODO (sayakpaul): Handle the cases when we actually need to expand when using quantization.
+            base_module_shape = cls._calculate_module_shape(model=transformer, base_weight_param_name=base_param_name)
+
+            if base_module_shape[1] > lora_A_param.shape[1]:
+                shape = (lora_A_param.shape[0], base_weight_param.shape[1])
+                expanded_state_dict_weight = torch.zeros(shape, device=base_weight_param.device)
+                expanded_state_dict_weight[:, : lora_A_param.shape[1]].copy_(lora_A_param)
+                lora_state_dict[f"{prefix}{k}.lora_A.weight"] = expanded_state_dict_weight
+                expanded_module_names.add(k)
+            elif base_module_shape[1] < lora_A_param.shape[1]:
+                raise NotImplementedError(
+                    f"This LoRA param ({k}.lora_A.weight) has an incompatible shape {lora_A_param.shape}. Please open an issue to file for a feature request - https://github.com/huggingface/diffusers/issues/new."
+                )
+
+        if expanded_module_names:
+            logger.info(
+                f"The following LoRA modules were zero padded to match the state dict of {cls.transformer_name}: {expanded_module_names}. Please open an issue if you think this was unexpected - https://github.com/huggingface/diffusers/issues/new."
+            )
+
+        return lora_state_dict
+
+    @staticmethod
+    def _calculate_module_shape(
+        model: "torch.nn.Module",
+        base_module: "torch.nn.Linear" = None,
+        base_weight_param_name: str = None,
+    ) -> "torch.Size":
+        def _get_weight_shape(weight: torch.Tensor):
+            return weight.quant_state.shape if weight.__class__.__name__ == "Params4bit" else weight.shape
+
+        if base_module is not None:
+            return _get_weight_shape(base_module.weight)
+        elif base_weight_param_name is not None:
+            if not base_weight_param_name.endswith(".weight"):
+                raise ValueError(
+                    f"Invalid `base_weight_param_name` passed as it does not end with '.weight' {base_weight_param_name=}."
+                )
+            module_path = base_weight_param_name.rsplit(".weight", 1)[0]
+            submodule = get_submodule_by_name(model, module_path)
+            return _get_weight_shape(submodule.weight)
+
+        raise ValueError("Either `base_module` or `base_weight_param_name` must be provided.")
+
+
+# The reason why we subclass from `StableDiffusionLoraLoaderMixin` here is because Amused initially
+# relied on `StableDiffusionLoraLoaderMixin` for its LoRA support.
+class AmusedLoraLoaderMixin(StableDiffusionLoraLoaderMixin):
+    _lora_loadable_modules = ["transformer", "text_encoder"]
+    transformer_name = TRANSFORMER_NAME
+    text_encoder_name = TEXT_ENCODER_NAME
+
+    @classmethod
+    # Copied from diffusers.loaders.lora_pipeline.FluxLoraLoaderMixin.load_lora_into_transformer with FluxTransformer2DModel->UVit2DModel
+    def load_lora_into_transformer(
+        cls, state_dict, network_alphas, transformer, adapter_name=None, _pipeline=None, low_cpu_mem_usage=False
+    ):
+        """
+        This will load the LoRA layers specified in `state_dict` into `transformer`.
+
+        Parameters:
+            state_dict (`dict`):
+                A standard state dict containing the lora layer parameters. The keys can either be indexed directly
+                into the unet or prefixed with an additional `unet` which can be used to distinguish between text
+                encoder lora layers.
+            network_alphas (`Dict[str, float]`):
+                The value of the network alpha used for stable learning and preventing underflow. This value has the
+                same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
+                link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
+            transformer (`UVit2DModel`):
+                The Transformer model to load the LoRA layers into.
+            adapter_name (`str`, *optional*):
+                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
+                `default_{i}` where i is the total number of adapters being loaded.
+            low_cpu_mem_usage (`bool`, *optional*):
+                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
+                weights.
+        """
+        if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"):
+            raise ValueError(
+                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
+            )
+
+        # Load the layers corresponding to transformer.
+        keys = list(state_dict.keys())
+        transformer_present = any(key.startswith(cls.transformer_name) for key in keys)
+        if transformer_present:
+            logger.info(f"Loading {cls.transformer_name}.")
+            transformer.load_lora_adapter(
+                state_dict,
+                network_alphas=network_alphas,
+                adapter_name=adapter_name,
+                _pipeline=_pipeline,
+                low_cpu_mem_usage=low_cpu_mem_usage,
+            )
+
+    @classmethod
+    # Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder
+    def load_lora_into_text_encoder(
+        cls,
+        state_dict,
+        network_alphas,
+        text_encoder,
+        prefix=None,
+        lora_scale=1.0,
+        adapter_name=None,
+        _pipeline=None,
+        low_cpu_mem_usage=False,
+    ):
+        """
+        This will load the LoRA layers specified in `state_dict` into `text_encoder`
+
+        Parameters:
+            state_dict (`dict`):
+                A standard state dict containing the lora layer parameters. The key should be prefixed with an
+                additional `text_encoder` to distinguish between unet lora layers.
+            network_alphas (`Dict[str, float]`):
+                The value of the network alpha used for stable learning and preventing underflow. This value has the
+                same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
+                link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
+            text_encoder (`CLIPTextModel`):
+                The text encoder model to load the LoRA layers into.
+            prefix (`str`):
+                Expected prefix of the `text_encoder` in the `state_dict`.
+            lora_scale (`float`):
+                How much to scale the output of the lora linear layer before it is added with the output of the regular
+                lora layer.
+            adapter_name (`str`, *optional*):
+                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
+                `default_{i}` where i is the total number of adapters being loaded.
+            low_cpu_mem_usage (`bool`, *optional*):
+                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
+                weights.
+        """
+        _load_lora_into_text_encoder(
+            state_dict=state_dict,
+            network_alphas=network_alphas,
+            lora_scale=lora_scale,
+            text_encoder=text_encoder,
+            prefix=prefix,
+            text_encoder_name=cls.text_encoder_name,
+            adapter_name=adapter_name,
+            _pipeline=_pipeline,
+            low_cpu_mem_usage=low_cpu_mem_usage,
+        )
+
+    @classmethod
+    def save_lora_weights(
+        cls,
+        save_directory: Union[str, os.PathLike],
+        text_encoder_lora_layers: Dict[str, torch.nn.Module] = None,
+        transformer_lora_layers: Dict[str, torch.nn.Module] = None,
+        is_main_process: bool = True,
+        weight_name: str = None,
+        save_function: Callable = None,
+        safe_serialization: bool = True,
+    ):
+        r"""
+        Save the LoRA parameters corresponding to the UNet and text encoder.
+
+        Arguments:
+            save_directory (`str` or `os.PathLike`):
+                Directory to save LoRA parameters to. Will be created if it doesn't exist.
+            unet_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
+                State dict of the LoRA layers corresponding to the `unet`.
+            text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
+                State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text
+                encoder LoRA state dict because it comes from 🤗 Transformers.
+            is_main_process (`bool`, *optional*, defaults to `True`):
+                Whether the process calling this is the main process or not. Useful during distributed training and you
+                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
+                process to avoid race conditions.
+            save_function (`Callable`):
+                The function to use to save the state dictionary. Useful during distributed training when you need to
+                replace `torch.save` with another method. Can be configured with the environment variable
+                `DIFFUSERS_SAVE_MODE`.
+            safe_serialization (`bool`, *optional*, defaults to `True`):
+                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
+        """
+        state_dict = {}
+
+        if not (transformer_lora_layers or text_encoder_lora_layers):
+            raise ValueError("You must pass at least one of `transformer_lora_layers` or `text_encoder_lora_layers`.")
+
+        if transformer_lora_layers:
+            state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name))
+
+        if text_encoder_lora_layers:
+            state_dict.update(cls.pack_weights(text_encoder_lora_layers, cls.text_encoder_name))
+
+        # Save the model
+        cls.write_lora_layers(
+            state_dict=state_dict,
+            save_directory=save_directory,
+            is_main_process=is_main_process,
+            weight_name=weight_name,
+            save_function=save_function,
+            safe_serialization=safe_serialization,
+        )
+
+
+class CogVideoXLoraLoaderMixin(LoraBaseMixin):
+    r"""
+    Load LoRA layers into [`CogVideoXTransformer3DModel`]. Specific to [`CogVideoXPipeline`].
+    """
+
+    _lora_loadable_modules = ["transformer"]
+    transformer_name = TRANSFORMER_NAME
+
+    @classmethod
+    @validate_hf_hub_args
+    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.lora_state_dict
+    def lora_state_dict(
+        cls,
+        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
+        **kwargs,
+    ):
+        r"""
+        Return state dict for lora weights and the network alphas.
+
+        <Tip warning={true}>
+
+        We support loading A1111 formatted LoRA checkpoints in a limited capacity.
+
+        This function is experimental and might change in the future.
+
+        </Tip>
+
+        Parameters:
+            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
+                Can be either:
+
+                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
+                      the Hub.
+                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
+                      with [`ModelMixin.save_pretrained`].
+                    - A [torch state
+                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
+
+            cache_dir (`Union[str, os.PathLike]`, *optional*):
+                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
+                is not used.
+            force_download (`bool`, *optional*, defaults to `False`):
+                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
+                cached versions if they exist.
+
+            proxies (`Dict[str, str]`, *optional*):
+                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
+                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
+            local_files_only (`bool`, *optional*, defaults to `False`):
+                Whether to only load local model weights and configuration files or not. If set to `True`, the model
+                won't be downloaded from the Hub.
+            token (`str` or *bool*, *optional*):
+                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
+                `diffusers-cli login` (stored in `~/.huggingface`) is used.
+            revision (`str`, *optional*, defaults to `"main"`):
+                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
+                allowed by Git.
+            subfolder (`str`, *optional*, defaults to `""`):
+                The subfolder location of a model file within a larger model repository on the Hub or locally.
+
+        """
+        # Load the main state dict first which has the LoRA layers for either of
+        # transformer and text encoder or both.
+        cache_dir = kwargs.pop("cache_dir", None)
+        force_download = kwargs.pop("force_download", False)
+        proxies = kwargs.pop("proxies", None)
+        local_files_only = kwargs.pop("local_files_only", None)
+        token = kwargs.pop("token", None)
+        revision = kwargs.pop("revision", None)
+        subfolder = kwargs.pop("subfolder", None)
+        weight_name = kwargs.pop("weight_name", None)
+        use_safetensors = kwargs.pop("use_safetensors", None)
+
+        allow_pickle = False
+        if use_safetensors is None:
+            use_safetensors = True
+            allow_pickle = True
+
+        user_agent = {
+            "file_type": "attn_procs_weights",
+            "framework": "pytorch",
+        }
+
+        state_dict = _fetch_state_dict(
+            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
+            weight_name=weight_name,
+            use_safetensors=use_safetensors,
+            local_files_only=local_files_only,
+            cache_dir=cache_dir,
+            force_download=force_download,
+            proxies=proxies,
+            token=token,
+            revision=revision,
+            subfolder=subfolder,
+            user_agent=user_agent,
+            allow_pickle=allow_pickle,
+        )
+
+        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
+        if is_dora_scale_present:
+            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
+            logger.warning(warn_msg)
+            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}
+
+        return state_dict
+
+    def load_lora_weights(
+        self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], adapter_name=None, **kwargs
+    ):
+        """
+        Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.transformer` and
+        `self.text_encoder`. All kwargs are forwarded to `self.lora_state_dict`. See
+        [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded.
+        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state
+        dict is loaded into `self.transformer`.
+
+        Parameters:
+            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
+                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
+            adapter_name (`str`, *optional*):
+                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
+                `default_{i}` where i is the total number of adapters being loaded.
+            low_cpu_mem_usage (`bool`, *optional*):
+                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
+                weights.
+            kwargs (`dict`, *optional*):
+                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
+        """
+        if not USE_PEFT_BACKEND:
+            raise ValueError("PEFT backend is required for this method.")
+
+        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
+        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
+            raise ValueError(
+                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
+            )
+
+        # if a dict is passed, copy it instead of modifying it inplace
+        if isinstance(pretrained_model_name_or_path_or_dict, dict):
+            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()
+
+        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
+        state_dict = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
+
+        is_correct_format = all("lora" in key for key in state_dict.keys())
+        if not is_correct_format:
+            raise ValueError("Invalid LoRA checkpoint.")
+
+        self.load_lora_into_transformer(
+            state_dict,
+            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
+            adapter_name=adapter_name,
+            _pipeline=self,
+            low_cpu_mem_usage=low_cpu_mem_usage,
+        )
+
+    @classmethod
+    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->CogVideoXTransformer3DModel
+    def load_lora_into_transformer(
+        cls, state_dict, transformer, adapter_name=None, _pipeline=None, low_cpu_mem_usage=False
+    ):
+        """
+        This will load the LoRA layers specified in `state_dict` into `transformer`.
+
+        Parameters:
+            state_dict (`dict`):
+                A standard state dict containing the lora layer parameters. The keys can either be indexed directly
+                into the unet or prefixed with an additional `unet` which can be used to distinguish between text
+                encoder lora layers.
+            transformer (`CogVideoXTransformer3DModel`):
+                The Transformer model to load the LoRA layers into.
+            adapter_name (`str`, *optional*):
+                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
+                `default_{i}` where i is the total number of adapters being loaded.
+            low_cpu_mem_usage (`bool`, *optional*):
+                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
+                weights.
+        """
+        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
+            raise ValueError(
+                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
+            )
+
+        # Load the layers corresponding to transformer.
+        logger.info(f"Loading {cls.transformer_name}.")
+        transformer.load_lora_adapter(
+            state_dict,
+            network_alphas=None,
+            adapter_name=adapter_name,
+            _pipeline=_pipeline,
+            low_cpu_mem_usage=low_cpu_mem_usage,
+        )
+
+    @classmethod
+    # Adapted from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.save_lora_weights without support for text encoder
+    def save_lora_weights(
+        cls,
+        save_directory: Union[str, os.PathLike],
+        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
+        is_main_process: bool = True,
+        weight_name: str = None,
+        save_function: Callable = None,
+        safe_serialization: bool = True,
+    ):
+        r"""
+        Save the LoRA parameters corresponding to the UNet and text encoder.
+
+        Arguments:
+            save_directory (`str` or `os.PathLike`):
+                Directory to save LoRA parameters to. Will be created if it doesn't exist.
+            transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
+                State dict of the LoRA layers corresponding to the `transformer`.
+            is_main_process (`bool`, *optional*, defaults to `True`):
+                Whether the process calling this is the main process or not. Useful during distributed training and you
+                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
+                process to avoid race conditions.
+            save_function (`Callable`):
+                The function to use to save the state dictionary. Useful during distributed training when you need to
+                replace `torch.save` with another method. Can be configured with the environment variable
+                `DIFFUSERS_SAVE_MODE`.
+            safe_serialization (`bool`, *optional*, defaults to `True`):
+                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
+        """
+        state_dict = {}
+
+        if not transformer_lora_layers:
+            raise ValueError("You must pass `transformer_lora_layers`.")
+
+        if transformer_lora_layers:
+            state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name))
+
+        # Save the model
+        cls.write_lora_layers(
+            state_dict=state_dict,
+            save_directory=save_directory,
+            is_main_process=is_main_process,
+            weight_name=weight_name,
+            save_function=save_function,
+            safe_serialization=safe_serialization,
+        )
+
+    def fuse_lora(
+        self,
+        components: List[str] = ["transformer"],
+        lora_scale: float = 1.0,
+        safe_fusing: bool = False,
+        adapter_names: Optional[List[str]] = None,
+        **kwargs,
+    ):
+        r"""
+        Fuses the LoRA parameters into the original parameters of the corresponding blocks.
+
+        <Tip warning={true}>
+
+        This is an experimental API.
+
+        </Tip>
+
+        Args:
+            components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into.
+            lora_scale (`float`, defaults to 1.0):
+                Controls how much to influence the outputs with the LoRA parameters.
+            safe_fusing (`bool`, defaults to `False`):
+                Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them.
+            adapter_names (`List[str]`, *optional*):
+                Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused.
+
+        Example:
+
+        ```py
+        from diffusers import DiffusionPipeline
+        import torch
+
+        pipeline = DiffusionPipeline.from_pretrained(
+            "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
+        ).to("cuda")
+        pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
+        pipeline.fuse_lora(lora_scale=0.7)
+        ```
+        """
+        super().fuse_lora(
+            components=components, lora_scale=lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names
+        )
+
+    def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs):
+        r"""
+        Reverses the effect of
+        [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora).
+
+        <Tip warning={true}>
+
+        This is an experimental API.
+
+        </Tip>
+
+        Args:
+            components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from.
+            unfuse_transformer (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters.
+        """
+        super().unfuse_lora(components=components)
+
+
+class Mochi1LoraLoaderMixin(LoraBaseMixin):
+    r"""
+    Load LoRA layers into [`MochiTransformer3DModel`]. Specific to [`MochiPipeline`].
+    """
+
+    _lora_loadable_modules = ["transformer"]
+    transformer_name = TRANSFORMER_NAME
+
+    @classmethod
+    @validate_hf_hub_args
+    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.lora_state_dict
+    def lora_state_dict(
+        cls,
+        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
+        **kwargs,
+    ):
+        r"""
+        Return state dict for lora weights and the network alphas.
+
+        <Tip warning={true}>
+
+        We support loading A1111 formatted LoRA checkpoints in a limited capacity.
+
+        This function is experimental and might change in the future.
+
+        </Tip>
+
+        Parameters:
+            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
+                Can be either:
+
+                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
+                      the Hub.
+                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
+                      with [`ModelMixin.save_pretrained`].
+                    - A [torch state
+                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
+
+            cache_dir (`Union[str, os.PathLike]`, *optional*):
+                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
+                is not used.
+            force_download (`bool`, *optional*, defaults to `False`):
+                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
+                cached versions if they exist.
+
+            proxies (`Dict[str, str]`, *optional*):
+                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
+                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
+            local_files_only (`bool`, *optional*, defaults to `False`):
+                Whether to only load local model weights and configuration files or not. If set to `True`, the model
+                won't be downloaded from the Hub.
+            token (`str` or *bool*, *optional*):
+                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
+                `diffusers-cli login` (stored in `~/.huggingface`) is used.
+            revision (`str`, *optional*, defaults to `"main"`):
+                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
+                allowed by Git.
+            subfolder (`str`, *optional*, defaults to `""`):
+                The subfolder location of a model file within a larger model repository on the Hub or locally.
+
+        """
+        # Load the main state dict first which has the LoRA layers for either of
+        # transformer and text encoder or both.
+        cache_dir = kwargs.pop("cache_dir", None)
+        force_download = kwargs.pop("force_download", False)
+        proxies = kwargs.pop("proxies", None)
+        local_files_only = kwargs.pop("local_files_only", None)
+        token = kwargs.pop("token", None)
+        revision = kwargs.pop("revision", None)
+        subfolder = kwargs.pop("subfolder", None)
+        weight_name = kwargs.pop("weight_name", None)
+        use_safetensors = kwargs.pop("use_safetensors", None)
+
+        allow_pickle = False
+        if use_safetensors is None:
+            use_safetensors = True
+            allow_pickle = True
+
+        user_agent = {
+            "file_type": "attn_procs_weights",
+            "framework": "pytorch",
+        }
+
+        state_dict = _fetch_state_dict(
+            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
+            weight_name=weight_name,
+            use_safetensors=use_safetensors,
+            local_files_only=local_files_only,
+            cache_dir=cache_dir,
+            force_download=force_download,
+            proxies=proxies,
+            token=token,
+            revision=revision,
+            subfolder=subfolder,
+            user_agent=user_agent,
+            allow_pickle=allow_pickle,
+        )
+
+        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
+        if is_dora_scale_present:
+            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
+            logger.warning(warn_msg)
+            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}
+
+        return state_dict
+
+    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.load_lora_weights
+    def load_lora_weights(
+        self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], adapter_name=None, **kwargs
+    ):
+        """
+        Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.transformer` and
+        `self.text_encoder`. All kwargs are forwarded to `self.lora_state_dict`. See
+        [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded.
+        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state
+        dict is loaded into `self.transformer`.
+
+        Parameters:
+            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
+                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
+            adapter_name (`str`, *optional*):
+                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
+                `default_{i}` where i is the total number of adapters being loaded.
+            low_cpu_mem_usage (`bool`, *optional*):
+                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
+                weights.
+            kwargs (`dict`, *optional*):
+                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
+        """
+        if not USE_PEFT_BACKEND:
+            raise ValueError("PEFT backend is required for this method.")
+
+        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
+        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
+            raise ValueError(
+                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
+            )
+
+        # if a dict is passed, copy it instead of modifying it inplace
+        if isinstance(pretrained_model_name_or_path_or_dict, dict):
+            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()
+
+        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
+        state_dict = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
+
+        is_correct_format = all("lora" in key for key in state_dict.keys())
+        if not is_correct_format:
+            raise ValueError("Invalid LoRA checkpoint.")
+
+        self.load_lora_into_transformer(
+            state_dict,
+            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
+            adapter_name=adapter_name,
+            _pipeline=self,
+            low_cpu_mem_usage=low_cpu_mem_usage,
+        )
+
+    @classmethod
+    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->MochiTransformer3DModel
+    def load_lora_into_transformer(
+        cls, state_dict, transformer, adapter_name=None, _pipeline=None, low_cpu_mem_usage=False
+    ):
+        """
+        This will load the LoRA layers specified in `state_dict` into `transformer`.
+
+        Parameters:
+            state_dict (`dict`):
+                A standard state dict containing the lora layer parameters. The keys can either be indexed directly
+                into the unet or prefixed with an additional `unet` which can be used to distinguish between text
+                encoder lora layers.
+            transformer (`MochiTransformer3DModel`):
+                The Transformer model to load the LoRA layers into.
+            adapter_name (`str`, *optional*):
+                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
+                `default_{i}` where i is the total number of adapters being loaded.
+            low_cpu_mem_usage (`bool`, *optional*):
+                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
+                weights.
+        """
+        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
+            raise ValueError(
+                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
+            )
+
+        # Load the layers corresponding to transformer.
+        logger.info(f"Loading {cls.transformer_name}.")
+        transformer.load_lora_adapter(
+            state_dict,
+            network_alphas=None,
+            adapter_name=adapter_name,
+            _pipeline=_pipeline,
+            low_cpu_mem_usage=low_cpu_mem_usage,
+        )
+
+    @classmethod
+    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights
+    def save_lora_weights(
+        cls,
+        save_directory: Union[str, os.PathLike],
+        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
+        is_main_process: bool = True,
+        weight_name: str = None,
+        save_function: Callable = None,
+        safe_serialization: bool = True,
+    ):
+        r"""
+        Save the LoRA parameters corresponding to the UNet and text encoder.
+
+        Arguments:
+            save_directory (`str` or `os.PathLike`):
+                Directory to save LoRA parameters to. Will be created if it doesn't exist.
+            transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
+                State dict of the LoRA layers corresponding to the `transformer`.
+            is_main_process (`bool`, *optional*, defaults to `True`):
+                Whether the process calling this is the main process or not. Useful during distributed training and you
+                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
+                process to avoid race conditions.
+            save_function (`Callable`):
+                The function to use to save the state dictionary. Useful during distributed training when you need to
+                replace `torch.save` with another method. Can be configured with the environment variable
+                `DIFFUSERS_SAVE_MODE`.
+            safe_serialization (`bool`, *optional*, defaults to `True`):
+                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
+        """
+        state_dict = {}
+
+        if not transformer_lora_layers:
+            raise ValueError("You must pass `transformer_lora_layers`.")
+
+        if transformer_lora_layers:
+            state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name))
+
+        # Save the model
+        cls.write_lora_layers(
+            state_dict=state_dict,
+            save_directory=save_directory,
+            is_main_process=is_main_process,
+            weight_name=weight_name,
+            save_function=save_function,
+            safe_serialization=safe_serialization,
+        )
+
+    def fuse_lora(
+        self,
+        components: List[str] = ["transformer"],
+        lora_scale: float = 1.0,
+        safe_fusing: bool = False,
+        adapter_names: Optional[List[str]] = None,
+        **kwargs,
+    ):
+        r"""
+        Fuses the LoRA parameters into the original parameters of the corresponding blocks.
+
+        <Tip warning={true}>
+
+        This is an experimental API.
+
+        </Tip>
+
+        Args:
+            components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into.
+            lora_scale (`float`, defaults to 1.0):
+                Controls how much to influence the outputs with the LoRA parameters.
+            safe_fusing (`bool`, defaults to `False`):
+                Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them.
+            adapter_names (`List[str]`, *optional*):
+                Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused.
+
+        Example:
+
+        ```py
+        from diffusers import DiffusionPipeline
+        import torch
+
+        pipeline = DiffusionPipeline.from_pretrained(
+            "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
+        ).to("cuda")
+        pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
+        pipeline.fuse_lora(lora_scale=0.7)
+        ```
+        """
+        super().fuse_lora(
+            components=components, lora_scale=lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names
+        )
+
+    def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs):
+        r"""
+        Reverses the effect of
+        [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora).
+
+        <Tip warning={true}>
+
+        This is an experimental API.
+
+        </Tip>
+
+        Args:
+            components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from.
+            unfuse_transformer (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters.
+        """
+        super().unfuse_lora(components=components)
+
+
+class LTXVideoLoraLoaderMixin(LoraBaseMixin):
+    r"""
+    Load LoRA layers into [`LTXVideoTransformer3DModel`]. Specific to [`LTXPipeline`].
+    """
+
+    _lora_loadable_modules = ["transformer"]
+    transformer_name = TRANSFORMER_NAME
+
+    @classmethod
+    @validate_hf_hub_args
+    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.lora_state_dict
+    def lora_state_dict(
+        cls,
+        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
+        **kwargs,
+    ):
+        r"""
+        Return state dict for lora weights and the network alphas.
+
+        <Tip warning={true}>
+
+        We support loading A1111 formatted LoRA checkpoints in a limited capacity.
+
+        This function is experimental and might change in the future.
+
+        </Tip>
+
+        Parameters:
+            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
+                Can be either:
+
+                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
+                      the Hub.
+                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
+                      with [`ModelMixin.save_pretrained`].
+                    - A [torch state
+                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
+
+            cache_dir (`Union[str, os.PathLike]`, *optional*):
+                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
+                is not used.
+            force_download (`bool`, *optional*, defaults to `False`):
+                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
+                cached versions if they exist.
+
+            proxies (`Dict[str, str]`, *optional*):
+                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
+                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
+            local_files_only (`bool`, *optional*, defaults to `False`):
+                Whether to only load local model weights and configuration files or not. If set to `True`, the model
+                won't be downloaded from the Hub.
+            token (`str` or *bool*, *optional*):
+                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
+                `diffusers-cli login` (stored in `~/.huggingface`) is used.
+            revision (`str`, *optional*, defaults to `"main"`):
+                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
+                allowed by Git.
+            subfolder (`str`, *optional*, defaults to `""`):
+                The subfolder location of a model file within a larger model repository on the Hub or locally.
+
+        """
+        # Load the main state dict first which has the LoRA layers for either of
+        # transformer and text encoder or both.
+        cache_dir = kwargs.pop("cache_dir", None)
+        force_download = kwargs.pop("force_download", False)
+        proxies = kwargs.pop("proxies", None)
+        local_files_only = kwargs.pop("local_files_only", None)
+        token = kwargs.pop("token", None)
+        revision = kwargs.pop("revision", None)
+        subfolder = kwargs.pop("subfolder", None)
+        weight_name = kwargs.pop("weight_name", None)
+        use_safetensors = kwargs.pop("use_safetensors", None)
+
+        allow_pickle = False
+        if use_safetensors is None:
+            use_safetensors = True
+            allow_pickle = True
+
+        user_agent = {
+            "file_type": "attn_procs_weights",
+            "framework": "pytorch",
+        }
+
+        state_dict = _fetch_state_dict(
+            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
+            weight_name=weight_name,
+            use_safetensors=use_safetensors,
+            local_files_only=local_files_only,
+            cache_dir=cache_dir,
+            force_download=force_download,
+            proxies=proxies,
+            token=token,
+            revision=revision,
+            subfolder=subfolder,
+            user_agent=user_agent,
+            allow_pickle=allow_pickle,
+        )
+
+        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
+        if is_dora_scale_present:
+            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
+            logger.warning(warn_msg)
+            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}
+
+        return state_dict
+
+    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.load_lora_weights
+    def load_lora_weights(
+        self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], adapter_name=None, **kwargs
+    ):
+        """
+        Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.transformer` and
+        `self.text_encoder`. All kwargs are forwarded to `self.lora_state_dict`. See
+        [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded.
+        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state
+        dict is loaded into `self.transformer`.
+
+        Parameters:
+            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
+                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
+            adapter_name (`str`, *optional*):
+                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
+                `default_{i}` where i is the total number of adapters being loaded.
+            low_cpu_mem_usage (`bool`, *optional*):
+                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
+                weights.
+            kwargs (`dict`, *optional*):
+                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
+        """
+        if not USE_PEFT_BACKEND:
+            raise ValueError("PEFT backend is required for this method.")
+
+        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
+        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
+            raise ValueError(
+                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
+            )
+
+        # if a dict is passed, copy it instead of modifying it inplace
+        if isinstance(pretrained_model_name_or_path_or_dict, dict):
+            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()
+
+        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
+        state_dict = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
+
+        is_correct_format = all("lora" in key for key in state_dict.keys())
+        if not is_correct_format:
+            raise ValueError("Invalid LoRA checkpoint.")
+
+        self.load_lora_into_transformer(
+            state_dict,
+            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
+            adapter_name=adapter_name,
+            _pipeline=self,
+            low_cpu_mem_usage=low_cpu_mem_usage,
+        )
+
+    @classmethod
+    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->LTXVideoTransformer3DModel
+    def load_lora_into_transformer(
+        cls, state_dict, transformer, adapter_name=None, _pipeline=None, low_cpu_mem_usage=False
+    ):
+        """
+        This will load the LoRA layers specified in `state_dict` into `transformer`.
+
+        Parameters:
+            state_dict (`dict`):
+                A standard state dict containing the lora layer parameters. The keys can either be indexed directly
+                into the unet or prefixed with an additional `unet` which can be used to distinguish between text
+                encoder lora layers.
+            transformer (`LTXVideoTransformer3DModel`):
+                The Transformer model to load the LoRA layers into.
+            adapter_name (`str`, *optional*):
+                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
+                `default_{i}` where i is the total number of adapters being loaded.
+            low_cpu_mem_usage (`bool`, *optional*):
+                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
+                weights.
+        """
+        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
+            raise ValueError(
+                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
+            )
+
+        # Load the layers corresponding to transformer.
+        logger.info(f"Loading {cls.transformer_name}.")
+        transformer.load_lora_adapter(
+            state_dict,
+            network_alphas=None,
+            adapter_name=adapter_name,
+            _pipeline=_pipeline,
+            low_cpu_mem_usage=low_cpu_mem_usage,
+        )
+
+    @classmethod
+    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights
+    def save_lora_weights(
+        cls,
+        save_directory: Union[str, os.PathLike],
+        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
+        is_main_process: bool = True,
+        weight_name: str = None,
+        save_function: Callable = None,
+        safe_serialization: bool = True,
+    ):
+        r"""
+        Save the LoRA parameters corresponding to the UNet and text encoder.
+
+        Arguments:
+            save_directory (`str` or `os.PathLike`):
+                Directory to save LoRA parameters to. Will be created if it doesn't exist.
+            transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
+                State dict of the LoRA layers corresponding to the `transformer`.
+            is_main_process (`bool`, *optional*, defaults to `True`):
+                Whether the process calling this is the main process or not. Useful during distributed training and you
+                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
+                process to avoid race conditions.
+            save_function (`Callable`):
+                The function to use to save the state dictionary. Useful during distributed training when you need to
+                replace `torch.save` with another method. Can be configured with the environment variable
+                `DIFFUSERS_SAVE_MODE`.
+            safe_serialization (`bool`, *optional*, defaults to `True`):
+                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
+        """
+        state_dict = {}
+
+        if not transformer_lora_layers:
+            raise ValueError("You must pass `transformer_lora_layers`.")
+
+        if transformer_lora_layers:
+            state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name))
+
+        # Save the model
+        cls.write_lora_layers(
+            state_dict=state_dict,
+            save_directory=save_directory,
+            is_main_process=is_main_process,
+            weight_name=weight_name,
+            save_function=save_function,
+            safe_serialization=safe_serialization,
+        )
+
+    def fuse_lora(
+        self,
+        components: List[str] = ["transformer"],
+        lora_scale: float = 1.0,
+        safe_fusing: bool = False,
+        adapter_names: Optional[List[str]] = None,
+        **kwargs,
+    ):
+        r"""
+        Fuses the LoRA parameters into the original parameters of the corresponding blocks.
+
+        <Tip warning={true}>
+
+        This is an experimental API.
+
+        </Tip>
+
+        Args:
+            components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into.
+            lora_scale (`float`, defaults to 1.0):
+                Controls how much to influence the outputs with the LoRA parameters.
+            safe_fusing (`bool`, defaults to `False`):
+                Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them.
+            adapter_names (`List[str]`, *optional*):
+                Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused.
+
+        Example:
+
+        ```py
+        from diffusers import DiffusionPipeline
+        import torch
+
+        pipeline = DiffusionPipeline.from_pretrained(
+            "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
+        ).to("cuda")
+        pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
+        pipeline.fuse_lora(lora_scale=0.7)
+        ```
+        """
+        super().fuse_lora(
+            components=components, lora_scale=lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names
+        )
+
+    def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs):
+        r"""
+        Reverses the effect of
+        [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora).
+
+        <Tip warning={true}>
+
+        This is an experimental API.
+
+        </Tip>
+
+        Args:
+            components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from.
+            unfuse_transformer (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters.
+        """
+        super().unfuse_lora(components=components)
+
+
+class SanaLoraLoaderMixin(LoraBaseMixin):
+    r"""
+    Load LoRA layers into [`SanaTransformer2DModel`]. Specific to [`SanaPipeline`].
+    """
+
+    _lora_loadable_modules = ["transformer"]
+    transformer_name = TRANSFORMER_NAME
+
+    @classmethod
+    @validate_hf_hub_args
+    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.lora_state_dict
+    def lora_state_dict(
+        cls,
+        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
+        **kwargs,
+    ):
+        r"""
+        Return state dict for lora weights and the network alphas.
+
+        <Tip warning={true}>
+
+        We support loading A1111 formatted LoRA checkpoints in a limited capacity.
+
+        This function is experimental and might change in the future.
+
+        </Tip>
+
+        Parameters:
+            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
+                Can be either:
+
+                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
+                      the Hub.
+                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
+                      with [`ModelMixin.save_pretrained`].
+                    - A [torch state
+                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
+
+            cache_dir (`Union[str, os.PathLike]`, *optional*):
+                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
+                is not used.
+            force_download (`bool`, *optional*, defaults to `False`):
+                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
+                cached versions if they exist.
+
+            proxies (`Dict[str, str]`, *optional*):
+                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
+                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
+            local_files_only (`bool`, *optional*, defaults to `False`):
+                Whether to only load local model weights and configuration files or not. If set to `True`, the model
+                won't be downloaded from the Hub.
+            token (`str` or *bool*, *optional*):
+                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
+                `diffusers-cli login` (stored in `~/.huggingface`) is used.
+            revision (`str`, *optional*, defaults to `"main"`):
+                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
+                allowed by Git.
+            subfolder (`str`, *optional*, defaults to `""`):
+                The subfolder location of a model file within a larger model repository on the Hub or locally.
+
+        """
+        # Load the main state dict first which has the LoRA layers for either of
+        # transformer and text encoder or both.
+        cache_dir = kwargs.pop("cache_dir", None)
+        force_download = kwargs.pop("force_download", False)
+        proxies = kwargs.pop("proxies", None)
+        local_files_only = kwargs.pop("local_files_only", None)
+        token = kwargs.pop("token", None)
+        revision = kwargs.pop("revision", None)
+        subfolder = kwargs.pop("subfolder", None)
+        weight_name = kwargs.pop("weight_name", None)
+        use_safetensors = kwargs.pop("use_safetensors", None)
+
+        allow_pickle = False
+        if use_safetensors is None:
+            use_safetensors = True
+            allow_pickle = True
+
+        user_agent = {
+            "file_type": "attn_procs_weights",
+            "framework": "pytorch",
+        }
+
+        state_dict = _fetch_state_dict(
+            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
+            weight_name=weight_name,
+            use_safetensors=use_safetensors,
+            local_files_only=local_files_only,
+            cache_dir=cache_dir,
+            force_download=force_download,
+            proxies=proxies,
+            token=token,
+            revision=revision,
+            subfolder=subfolder,
+            user_agent=user_agent,
+            allow_pickle=allow_pickle,
+        )
+
+        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
+        if is_dora_scale_present:
+            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
+            logger.warning(warn_msg)
+            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}
+
+        return state_dict
+
+    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.load_lora_weights
+    def load_lora_weights(
+        self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], adapter_name=None, **kwargs
+    ):
+        """
+        Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.transformer` and
+        `self.text_encoder`. All kwargs are forwarded to `self.lora_state_dict`. See
+        [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded.
+        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state
+        dict is loaded into `self.transformer`.
+
+        Parameters:
+            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
+                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
+            adapter_name (`str`, *optional*):
+                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
+                `default_{i}` where i is the total number of adapters being loaded.
+            low_cpu_mem_usage (`bool`, *optional*):
+                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
+                weights.
+            kwargs (`dict`, *optional*):
+                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
+        """
+        if not USE_PEFT_BACKEND:
+            raise ValueError("PEFT backend is required for this method.")
+
+        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
+        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
+            raise ValueError(
+                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
+            )
+
+        # if a dict is passed, copy it instead of modifying it inplace
+        if isinstance(pretrained_model_name_or_path_or_dict, dict):
+            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()
+
+        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
+        state_dict = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
+
+        is_correct_format = all("lora" in key for key in state_dict.keys())
+        if not is_correct_format:
+            raise ValueError("Invalid LoRA checkpoint.")
+
+        self.load_lora_into_transformer(
+            state_dict,
+            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
+            adapter_name=adapter_name,
+            _pipeline=self,
+            low_cpu_mem_usage=low_cpu_mem_usage,
+        )
+
+    @classmethod
+    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->SanaTransformer2DModel
+    def load_lora_into_transformer(
+        cls, state_dict, transformer, adapter_name=None, _pipeline=None, low_cpu_mem_usage=False
+    ):
+        """
+        This will load the LoRA layers specified in `state_dict` into `transformer`.
+
+        Parameters:
+            state_dict (`dict`):
+                A standard state dict containing the lora layer parameters. The keys can either be indexed directly
+                into the unet or prefixed with an additional `unet` which can be used to distinguish between text
+                encoder lora layers.
+            transformer (`SanaTransformer2DModel`):
+                The Transformer model to load the LoRA layers into.
+            adapter_name (`str`, *optional*):
+                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
+                `default_{i}` where i is the total number of adapters being loaded.
+            low_cpu_mem_usage (`bool`, *optional*):
+                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
+                weights.
+        """
+        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
+            raise ValueError(
+                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
+            )
+
+        # Load the layers corresponding to transformer.
+        logger.info(f"Loading {cls.transformer_name}.")
+        transformer.load_lora_adapter(
+            state_dict,
+            network_alphas=None,
+            adapter_name=adapter_name,
+            _pipeline=_pipeline,
+            low_cpu_mem_usage=low_cpu_mem_usage,
+        )
+
+    @classmethod
+    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights
+    def save_lora_weights(
+        cls,
+        save_directory: Union[str, os.PathLike],
+        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
+        is_main_process: bool = True,
+        weight_name: str = None,
+        save_function: Callable = None,
+        safe_serialization: bool = True,
+    ):
+        r"""
+        Save the LoRA parameters corresponding to the UNet and text encoder.
+
+        Arguments:
+            save_directory (`str` or `os.PathLike`):
+                Directory to save LoRA parameters to. Will be created if it doesn't exist.
+            transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
+                State dict of the LoRA layers corresponding to the `transformer`.
+            is_main_process (`bool`, *optional*, defaults to `True`):
+                Whether the process calling this is the main process or not. Useful during distributed training and you
+                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
+                process to avoid race conditions.
+            save_function (`Callable`):
+                The function to use to save the state dictionary. Useful during distributed training when you need to
+                replace `torch.save` with another method. Can be configured with the environment variable
+                `DIFFUSERS_SAVE_MODE`.
+            safe_serialization (`bool`, *optional*, defaults to `True`):
+                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
+        """
+        state_dict = {}
+
+        if not transformer_lora_layers:
+            raise ValueError("You must pass `transformer_lora_layers`.")
+
+        if transformer_lora_layers:
+            state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name))
+
+        # Save the model
+        cls.write_lora_layers(
+            state_dict=state_dict,
+            save_directory=save_directory,
+            is_main_process=is_main_process,
+            weight_name=weight_name,
+            save_function=save_function,
+            safe_serialization=safe_serialization,
+        )
+
+    def fuse_lora(
+        self,
+        components: List[str] = ["transformer"],
+        lora_scale: float = 1.0,
+        safe_fusing: bool = False,
+        adapter_names: Optional[List[str]] = None,
+        **kwargs,
+    ):
+        r"""
+        Fuses the LoRA parameters into the original parameters of the corresponding blocks.
+
+        <Tip warning={true}>
+
+        This is an experimental API.
+
+        </Tip>
+
+        Args:
+            components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into.
+            lora_scale (`float`, defaults to 1.0):
+                Controls how much to influence the outputs with the LoRA parameters.
+            safe_fusing (`bool`, defaults to `False`):
+                Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them.
+            adapter_names (`List[str]`, *optional*):
+                Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused.
+
+        Example:
+
+        ```py
+        from diffusers import DiffusionPipeline
+        import torch
+
+        pipeline = DiffusionPipeline.from_pretrained(
+            "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
+        ).to("cuda")
+        pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
+        pipeline.fuse_lora(lora_scale=0.7)
+        ```
+        """
+        super().fuse_lora(
+            components=components, lora_scale=lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names
+        )
+
+    def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs):
+        r"""
+        Reverses the effect of
+        [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora).
+
+        <Tip warning={true}>
+
+        This is an experimental API.
+
+        </Tip>
+
+        Args:
+            components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from.
+            unfuse_transformer (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters.
+        """
+        super().unfuse_lora(components=components)
+
+
+class HunyuanVideoLoraLoaderMixin(LoraBaseMixin):
+    r"""
+    Load LoRA layers into [`HunyuanVideoTransformer3DModel`]. Specific to [`HunyuanVideoPipeline`].
+    """
+
+    _lora_loadable_modules = ["transformer"]
+    transformer_name = TRANSFORMER_NAME
+
+    @classmethod
+    @validate_hf_hub_args
+    def lora_state_dict(
+        cls,
+        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
+        **kwargs,
+    ):
+        r"""
+        Return state dict for lora weights and the network alphas.
+
+        <Tip warning={true}>
+
+        We support loading original format HunyuanVideo LoRA checkpoints.
+
+        This function is experimental and might change in the future.
+
+        </Tip>
+
+        Parameters:
+            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
+                Can be either:
+
+                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
+                      the Hub.
+                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
+                      with [`ModelMixin.save_pretrained`].
+                    - A [torch state
+                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
+
+            cache_dir (`Union[str, os.PathLike]`, *optional*):
+                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
+                is not used.
+            force_download (`bool`, *optional*, defaults to `False`):
+                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
+                cached versions if they exist.
+
+            proxies (`Dict[str, str]`, *optional*):
+                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
+                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
+            local_files_only (`bool`, *optional*, defaults to `False`):
+                Whether to only load local model weights and configuration files or not. If set to `True`, the model
+                won't be downloaded from the Hub.
+            token (`str` or *bool*, *optional*):
+                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
+                `diffusers-cli login` (stored in `~/.huggingface`) is used.
+            revision (`str`, *optional*, defaults to `"main"`):
+                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
+                allowed by Git.
+            subfolder (`str`, *optional*, defaults to `""`):
+                The subfolder location of a model file within a larger model repository on the Hub or locally.
+
+        """
+        # Load the main state dict first which has the LoRA layers for either of
+        # transformer and text encoder or both.
+        cache_dir = kwargs.pop("cache_dir", None)
+        force_download = kwargs.pop("force_download", False)
+        proxies = kwargs.pop("proxies", None)
+        local_files_only = kwargs.pop("local_files_only", None)
+        token = kwargs.pop("token", None)
+        revision = kwargs.pop("revision", None)
+        subfolder = kwargs.pop("subfolder", None)
+        weight_name = kwargs.pop("weight_name", None)
+        use_safetensors = kwargs.pop("use_safetensors", None)
+
+        allow_pickle = False
+        if use_safetensors is None:
+            use_safetensors = True
+            allow_pickle = True
+
+        user_agent = {
+            "file_type": "attn_procs_weights",
+            "framework": "pytorch",
+        }
+
+        state_dict = _fetch_state_dict(
+            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
+            weight_name=weight_name,
+            use_safetensors=use_safetensors,
+            local_files_only=local_files_only,
+            cache_dir=cache_dir,
+            force_download=force_download,
+            proxies=proxies,
+            token=token,
+            revision=revision,
+            subfolder=subfolder,
+            user_agent=user_agent,
+            allow_pickle=allow_pickle,
+        )
+
+        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
+        if is_dora_scale_present:
+            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
+            logger.warning(warn_msg)
+            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}
+
+        is_original_hunyuan_video = any("img_attn_qkv" in k for k in state_dict)
+        if is_original_hunyuan_video:
+            state_dict = _convert_hunyuan_video_lora_to_diffusers(state_dict)
+
+        return state_dict
+
+    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.load_lora_weights
+    def load_lora_weights(
+        self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], adapter_name=None, **kwargs
+    ):
+        """
+        Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.transformer` and
+        `self.text_encoder`. All kwargs are forwarded to `self.lora_state_dict`. See
+        [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded.
+        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state
+        dict is loaded into `self.transformer`.
+
+        Parameters:
+            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
+                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
+            adapter_name (`str`, *optional*):
+                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
+                `default_{i}` where i is the total number of adapters being loaded.
+            low_cpu_mem_usage (`bool`, *optional*):
+                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
+                weights.
+            kwargs (`dict`, *optional*):
+                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
+        """
+        if not USE_PEFT_BACKEND:
+            raise ValueError("PEFT backend is required for this method.")
+
+        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
+        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
+            raise ValueError(
+                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
+            )
+
+        # if a dict is passed, copy it instead of modifying it inplace
+        if isinstance(pretrained_model_name_or_path_or_dict, dict):
+            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()
+
+        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
+        state_dict = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
+
+        is_correct_format = all("lora" in key for key in state_dict.keys())
+        if not is_correct_format:
+            raise ValueError("Invalid LoRA checkpoint.")
+
+        self.load_lora_into_transformer(
+            state_dict,
+            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
+            adapter_name=adapter_name,
+            _pipeline=self,
+            low_cpu_mem_usage=low_cpu_mem_usage,
+        )
+
+    @classmethod
+    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->HunyuanVideoTransformer3DModel
+    def load_lora_into_transformer(
+        cls, state_dict, transformer, adapter_name=None, _pipeline=None, low_cpu_mem_usage=False
+    ):
+        """
+        This will load the LoRA layers specified in `state_dict` into `transformer`.
+
+        Parameters:
+            state_dict (`dict`):
+                A standard state dict containing the lora layer parameters. The keys can either be indexed directly
+                into the unet or prefixed with an additional `unet` which can be used to distinguish between text
+                encoder lora layers.
+            transformer (`HunyuanVideoTransformer3DModel`):
+                The Transformer model to load the LoRA layers into.
+            adapter_name (`str`, *optional*):
+                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
+                `default_{i}` where i is the total number of adapters being loaded.
+            low_cpu_mem_usage (`bool`, *optional*):
+                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
+                weights.
+        """
+        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
+            raise ValueError(
+                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
+            )
+
+        # Load the layers corresponding to transformer.
+        logger.info(f"Loading {cls.transformer_name}.")
+        transformer.load_lora_adapter(
+            state_dict,
+            network_alphas=None,
+            adapter_name=adapter_name,
+            _pipeline=_pipeline,
+            low_cpu_mem_usage=low_cpu_mem_usage,
+        )
+
+    @classmethod
+    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights
+    def save_lora_weights(
+        cls,
+        save_directory: Union[str, os.PathLike],
+        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
+        is_main_process: bool = True,
+        weight_name: str = None,
+        save_function: Callable = None,
+        safe_serialization: bool = True,
+    ):
+        r"""
+        Save the LoRA parameters corresponding to the UNet and text encoder.
+
+        Arguments:
+            save_directory (`str` or `os.PathLike`):
+                Directory to save LoRA parameters to. Will be created if it doesn't exist.
+            transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
+                State dict of the LoRA layers corresponding to the `transformer`.
+            is_main_process (`bool`, *optional*, defaults to `True`):
+                Whether the process calling this is the main process or not. Useful during distributed training and you
+                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
+                process to avoid race conditions.
+            save_function (`Callable`):
+                The function to use to save the state dictionary. Useful during distributed training when you need to
+                replace `torch.save` with another method. Can be configured with the environment variable
+                `DIFFUSERS_SAVE_MODE`.
+            safe_serialization (`bool`, *optional*, defaults to `True`):
+                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
+        """
+        state_dict = {}
+
+        if not transformer_lora_layers:
+            raise ValueError("You must pass `transformer_lora_layers`.")
+
+        if transformer_lora_layers:
+            state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name))
+
+        # Save the model
+        cls.write_lora_layers(
+            state_dict=state_dict,
+            save_directory=save_directory,
+            is_main_process=is_main_process,
+            weight_name=weight_name,
+            save_function=save_function,
+            safe_serialization=safe_serialization,
+        )
+
+    def fuse_lora(
+        self,
+        components: List[str] = ["transformer"],
+        lora_scale: float = 1.0,
+        safe_fusing: bool = False,
+        adapter_names: Optional[List[str]] = None,
+        **kwargs,
+    ):
+        r"""
+        Fuses the LoRA parameters into the original parameters of the corresponding blocks.
+
+        <Tip warning={true}>
+
+        This is an experimental API.
+
+        </Tip>
+
+        Args:
+            components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into.
+            lora_scale (`float`, defaults to 1.0):
+                Controls how much to influence the outputs with the LoRA parameters.
+            safe_fusing (`bool`, defaults to `False`):
+                Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them.
+            adapter_names (`List[str]`, *optional*):
+                Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused.
+
+        Example:
+
+        ```py
+        from diffusers import DiffusionPipeline
+        import torch
+
+        pipeline = DiffusionPipeline.from_pretrained(
+            "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
+        ).to("cuda")
+        pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
+        pipeline.fuse_lora(lora_scale=0.7)
+        ```
+        """
+        super().fuse_lora(
+            components=components, lora_scale=lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names
+        )
+
+    def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs):
+        r"""
+        Reverses the effect of
+        [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora).
+
+        <Tip warning={true}>
+
+        This is an experimental API.
+
+        </Tip>
+
+        Args:
+            components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from.
+            unfuse_transformer (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters.
+        """
+        super().unfuse_lora(components=components)
+
+
+class LoraLoaderMixin(StableDiffusionLoraLoaderMixin):
+    def __init__(self, *args, **kwargs):
+        deprecation_message = "LoraLoaderMixin is deprecated and this will be removed in a future version. Please use `StableDiffusionLoraLoaderMixin`, instead."
+        deprecate("LoraLoaderMixin", "1.0.0", deprecation_message)
+        super().__init__(*args, **kwargs)