Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2023-present the HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from __future__ import annotations | |
import importlib | |
import math | |
import warnings | |
from typing import Any, Optional, Union | |
import torch | |
import torch.nn as nn | |
import torch.nn.init as init | |
from peft.tuners.tuners_utils import BaseTunerLayer, check_adapters_to_merge | |
from peft.utils import transpose | |
from peft.utils.integrations import gather_params_ctx | |
from .layer import LoraLayer | |
class LoraParallelLinear(nn.Module, LoraLayer): | |
""" | |
When the target layer parallel_linear is RowParallelLinear, in order to keep the input and output shapes | |
consistent, we need to split the lora matrix A into rows, and the lora_B at this time should be a complete linear | |
layer; In the same way, when the target layer is ColumnParallelLinear, we perform column segmentation on lora_B, | |
while lora_A is still a complete linear layer. | |
""" | |
def __init__( | |
self, | |
base_layer, | |
adapter_name: str, | |
backend, | |
r: int = 0, | |
lora_alpha: int = 1, | |
lora_dropout: float = 0.0, | |
fan_in_fan_out: bool = False, | |
is_target_conv_1d_layer: bool = False, | |
init_lora_weights: Union[bool, str] = True, | |
use_rslora: bool = False, | |
use_dora: bool = False, | |
lora_bias: bool = False, | |
**kwargs, | |
): | |
if lora_bias: | |
raise ValueError(f"{self.__class__.__name__} does not support lora_bias yet, set it to False") | |
super().__init__() | |
LoraLayer.__init__(self, base_layer=base_layer, **kwargs) | |
if use_dora: | |
raise ValueError(f"{self.__class__.__name__} does not support DoRA yet, please set it to False") | |
self.backend = backend | |
self.is_parallel_a = isinstance(base_layer, backend.RowParallelLinear) | |
self.fan_in_fan_out = fan_in_fan_out | |
self._active_adapter = adapter_name | |
megatron_config = kwargs["megatron_config"] | |
parallel_linear_kwargs = {"megatron_config": megatron_config} | |
init_method = init.xavier_normal_ | |
if hasattr(megatron_config, "init_method"): | |
init_method = megatron_config.init_method | |
input_is_parallel = True | |
gather_output = False | |
if isinstance(base_layer, self.backend.RowParallelLinear): | |
input_is_parallel = base_layer.input_is_parallel | |
else: | |
gather_output = base_layer.gather_output | |
self.update_layer( | |
adapter_name, | |
r, | |
lora_alpha=lora_alpha, | |
lora_dropout=lora_dropout, | |
init_lora_weights=init_lora_weights, | |
use_rslora=use_rslora, | |
use_dora=use_dora, | |
init_method=init_method, | |
input_is_parallel=input_is_parallel, | |
gather_output=gather_output, | |
**parallel_linear_kwargs, | |
) | |
if is_target_conv_1d_layer: | |
raise ValueError( | |
f"{self.__class__.__name__} does not support target_conv_1d_layer yet, please set it to False" | |
) | |
self.is_target_conv_1d_layer = False | |
def update_layer( | |
self, | |
adapter_name, | |
r, | |
lora_alpha, | |
lora_dropout, | |
init_lora_weights, | |
use_rslora, | |
use_dora=False, | |
init_method=init.xavier_normal_, | |
input_is_parallel=True, | |
gather_output=False, | |
**parallel_linear_kwargs, | |
): | |
if r <= 0: | |
raise ValueError(f"`r` should be a positive integer value but the value passed is {r}") | |
self.r[adapter_name] = r | |
self.lora_alpha[adapter_name] = lora_alpha | |
if lora_dropout > 0.0: | |
lora_dropout_layer = nn.Dropout(p=lora_dropout) | |
else: | |
lora_dropout_layer = nn.Identity() | |
self.lora_dropout[adapter_name] = lora_dropout_layer | |
megatron_config = parallel_linear_kwargs["megatron_config"] | |
# lora needs to be forced to upgrade to 32-bit precision, otherwise it will overflow | |
megatron_config.params_dtype = torch.float32 | |
if self.is_parallel_a: | |
lora_a = self.backend.RowParallelLinear( | |
input_size=self.in_features, | |
output_size=r, | |
bias=False, | |
input_is_parallel=input_is_parallel, | |
skip_bias_add=True, | |
init_method=init_method, | |
config=megatron_config, | |
) | |
lora_b = nn.Linear(in_features=r, out_features=self.out_features, bias=False, dtype=torch.float32) | |
else: | |
lora_a = nn.Linear(in_features=self.in_features, out_features=r, bias=False, dtype=torch.float32) | |
lora_b = self.backend.ColumnParallelLinear( | |
input_size=r, | |
output_size=self.out_features, | |
bias=False, | |
gather_output=gather_output, | |
init_method=init_method, | |
config=megatron_config, | |
) | |
self.lora_A[adapter_name] = lora_a | |
self.lora_B[adapter_name] = lora_b | |
if use_rslora: | |
self.scaling[adapter_name] = lora_alpha / math.sqrt(r) | |
else: | |
self.scaling[adapter_name] = lora_alpha / r | |
# for inits that require access to the base weight, use gather_param_ctx so that the weight is gathered when using DeepSpeed | |
if isinstance(init_lora_weights, str) and init_lora_weights.startswith("pissa"): | |
with gather_params_ctx(self.get_base_layer().weight): | |
self.pissa_init(adapter_name, init_lora_weights) | |
elif isinstance(init_lora_weights, str) and init_lora_weights.lower() == "olora": | |
with gather_params_ctx(self.get_base_layer().weight): | |
self.olora_init(adapter_name) | |
elif init_lora_weights == "loftq": | |
with gather_params_ctx(self.get_base_layer().weight): | |
self.loftq_init(adapter_name) | |
elif init_lora_weights: | |
self.reset_lora_parameters(adapter_name, init_lora_weights) | |
# call this before dora_init | |
self._move_adapter_to_device_of_base_layer(adapter_name) | |
if use_dora: | |
self.dora_init(adapter_name) | |
self.use_dora[adapter_name] = True | |
else: | |
self.use_dora[adapter_name] = False | |
self.set_adapter(self.active_adapters) | |
def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any): | |
self._check_forward_args(x, *args, **kwargs) | |
adapter_names = kwargs.pop("adapter_names", None) | |
# If weight is used for matrix multiplication here, the final aggregation operation of the original | |
# parallel_linear layer will be missing, so we need to directly call its forward function to obtain the | |
# output of the original parallel_linear layer. | |
if self.disable_adapters: | |
if self.merged: | |
self.unmerge() | |
result, bias = self.base_layer(x, *args, **kwargs) | |
elif adapter_names is not None: | |
raise ValueError(f"{self.__class__.__name__} does not support mixed_batch_forward yet.") | |
elif self.merged: | |
result, bias = self.base_layer(x, *args, **kwargs) | |
else: | |
result, bias = self.base_layer(x, *args, **kwargs) | |
torch_result_dtype = result.dtype | |
for active_adapter in self.active_adapters: | |
if active_adapter not in self.lora_A.keys(): | |
continue | |
lora_A = self.lora_A[active_adapter] | |
lora_B = self.lora_B[active_adapter] | |
dropout = self.lora_dropout[active_adapter] | |
scaling = self.scaling[active_adapter] | |
x = x.to(lora_A.weight.dtype) | |
if not self.use_dora[active_adapter]: | |
result = result + lora_B(lora_A(dropout(x))) * scaling | |
else: | |
if isinstance(dropout, torch.nn.Identity) or not self.training: | |
base_result = result | |
else: | |
x = dropout(x) | |
base_result = None | |
result = result + self.lora_magnitude_vector[active_adapter]( | |
x, | |
lora_A=lora_A, | |
lora_B=lora_B, | |
scaling=scaling, | |
base_layer=self.get_base_layer(), | |
base_result=base_result, | |
) | |
result = result.to(torch_result_dtype) | |
return result, bias | |
def merge(self, safe_merge: bool = False, adapter_names: Optional[list[str]] = None) -> None: | |
""" | |
Merge the active adapter weights into the base weights | |
Args: | |
safe_merge (`bool`, *optional*): | |
If True, the merge operation will be performed in a copy of the original weights and check for NaNs | |
before merging the weights. This is useful if you want to check if the merge operation will produce | |
NaNs. Defaults to `False`. | |
adapter_names (`list[str]`, *optional*): | |
The list of adapter names that should be merged. If None, all active adapters will be merged. Defaults | |
to `None`. | |
""" | |
adapter_names = check_adapters_to_merge(self, adapter_names) | |
if not adapter_names: | |
# no adapter to merge | |
return | |
for active_adapter in adapter_names: | |
if active_adapter in self.lora_A.keys(): | |
base_layer = self.get_base_layer() | |
if safe_merge: | |
# Note that safe_merge will be slower than the normal merge | |
# because of the copy operation. | |
orig_weights = base_layer.weight.data.clone() | |
delta_weight = self.get_delta_weight(active_adapter) | |
if not self.use_dora[active_adapter]: | |
orig_weights = orig_weights + delta_weight | |
else: | |
# handle dora | |
# since delta_weight already includes scaling, set it to 1 here | |
weight_norm = ( | |
self.lora_magnitude_vector[active_adapter] | |
.get_weight_norm(orig_weights, transpose(delta_weight, self.fan_in_fan_out), scaling=1) | |
.detach() | |
) | |
# We need to cache weight_norm because it has to be based on the original weights. We | |
# cannot calculate it on the fly based on the merged weights when unmerging because its a | |
# different value | |
self._cache_store(f"{active_adapter}-weight_norm", weight_norm) | |
dora_factor = self.lora_magnitude_vector[active_adapter].weight / weight_norm | |
dora_factor = transpose(dora_factor.view(-1, 1), self.fan_in_fan_out) | |
orig_weights = dora_factor * (orig_weights + delta_weight) | |
if not torch.isfinite(orig_weights).all(): | |
raise ValueError( | |
f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken" | |
) | |
base_layer.weight.data = orig_weights | |
else: | |
delta_weight = self.get_delta_weight(active_adapter) | |
if not self.use_dora[active_adapter]: | |
base_layer.weight.data = base_layer.weight.data + delta_weight | |
else: | |
# handle dora | |
# since delta_weight already includes scaling, set it to 1 here | |
weight_norm = ( | |
self.lora_magnitude_vector[active_adapter] | |
.get_weight_norm( | |
base_layer.weight, transpose(delta_weight, self.fan_in_fan_out), scaling=1 | |
) | |
.detach() | |
) | |
# We need to cache weight_norm because it has to be based on the original weights. We | |
# cannot calculate it on the fly based on the merged weights when unmerging because its a | |
# different value | |
self._cache_store(f"{active_adapter}-weight_norm", weight_norm) | |
dora_factor = self.lora_magnitude_vector[active_adapter].weight / weight_norm | |
dora_factor = transpose(dora_factor.view(-1, 1), self.fan_in_fan_out) | |
new_weight = dora_factor * (base_layer.weight.data + delta_weight) | |
base_layer.weight.data = new_weight | |
self.merged_adapters.append(active_adapter) | |
def unmerge(self) -> None: | |
""" | |
This method unmerges all merged adapter layers from the base weights. | |
""" | |
if not self.merged: | |
warnings.warn("Already unmerged. Nothing to do.") | |
return | |
while len(self.merged_adapters) > 0: | |
active_adapter = self.merged_adapters.pop() | |
if active_adapter in self.lora_A.keys(): | |
weight = self.get_base_layer().weight | |
delta_weight = self.get_delta_weight(active_adapter) | |
if not self.use_dora[active_adapter]: | |
weight.data -= delta_weight | |
else: | |
weight_norm = self._cache_pop(f"{active_adapter}-weight_norm") | |
dora_factor = self.lora_magnitude_vector[active_adapter].weight / weight_norm | |
weight_orig = weight.data / dora_factor.view(-1, 1) - delta_weight | |
weight.data = weight_orig | |
def get_delta_weight(self, adapter) -> torch.Tensor: | |
""" | |
Compute the delta weight for the given adapter. | |
Args: | |
adapter (str): | |
The name of the adapter for which the delta weight should be computed. | |
""" | |
device = self.lora_B[adapter].weight.device | |
dtype = self.lora_B[adapter].weight.dtype | |
# In case users wants to merge the adapter weights that are in | |
# (b)float16 while being on CPU, we need to cast the weights to float32, perform the merge and then cast back to | |
# (b)float16 because some CPUs have slow bf16/fp16 matmuls. | |
cast_to_fp32 = device.type == "cpu" and (dtype == torch.float16 or dtype == torch.bfloat16) | |
weight_A = self.lora_A[adapter].weight | |
weight_B = self.lora_B[adapter].weight | |
if cast_to_fp32: | |
weight_A = weight_A.float() | |
weight_B = weight_B.float() | |
output_tensor = transpose(weight_B @ weight_A, self.fan_in_fan_out) * self.scaling[adapter] | |
if cast_to_fp32: | |
output_tensor = output_tensor.to(dtype=dtype) | |
# cast back the weights | |
self.lora_A[adapter].weight.data = weight_A.to(dtype) | |
self.lora_B[adapter].weight.data = weight_B.to(dtype) | |
return output_tensor | |
def __repr__(self) -> str: | |
rep = super().__repr__() | |
return "lora." + rep | |
def dispatch_megatron( | |
target: torch.nn.Module, | |
adapter_name: str, | |
lora_config, | |
**kwargs: Any, | |
) -> Optional[torch.nn.Module]: | |
new_module = None | |
if isinstance(target, BaseTunerLayer): | |
target_base_layer = target.get_base_layer() | |
else: | |
target_base_layer = target | |
if lora_config.megatron_config: | |
megatron_core = importlib.import_module(lora_config.megatron_core) | |
else: | |
megatron_core = None | |
if megatron_core and isinstance( | |
target_base_layer, | |
(megatron_core.tensor_parallel.ColumnParallelLinear, megatron_core.tensor_parallel.RowParallelLinear), | |
): | |
megatron_kwargs = kwargs.copy() | |
megatron_config = lora_config.megatron_config | |
if isinstance(megatron_config, dict): | |
transformer_config_class = megatron_core.transformer.transformer_config.TransformerConfig | |
megatron_config = transformer_config_class(**lora_config.megatron_config) | |
megatron_kwargs["megatron_config"] = megatron_config | |
if megatron_kwargs["fan_in_fan_out"]: | |
warnings.warn( | |
"fan_in_fan_out is set to True but the target module is `ColumnParallelLinear` " | |
"or `RowParallelLinear`. " | |
"Setting fan_in_fan_out to False." | |
) | |
megatron_kwargs["fan_in_fan_out"] = lora_config.fan_in_fan_out = False | |
new_module = LoraParallelLinear( | |
base_layer=target, adapter_name=adapter_name, backend=megatron_core.tensor_parallel, **megatron_kwargs | |
) | |
return new_module | |