RiverZ's picture
upd
3b609b9
raw
history blame
8.4 kB
# Copyright 2024-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import warnings
from typing import Any, List, Optional, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers.pytorch_utils import Conv1D
from peft.tuners.tuners_utils import BaseTunerLayer, check_adapters_to_merge
class FourierFTLayer(BaseTunerLayer):
# All names of layers that may contain (trainable) adapter weights
adapter_layer_names = ("fourierft_spectrum",)
# All names of other parameters that may contain adapter-related parameters
other_param_names = ("fourierft_n_frequency", "fourierft_scaling", "fourierft_random_loc_seed")
def __init__(self, base_layer: nn.Module, **kwargs) -> None:
self.base_layer = base_layer
self.fourierft_n_frequency = {}
self.fourierft_scaling = {}
self.fourierft_spectrum = nn.ParameterDict({})
self.indices = {}
self.fourierft_random_loc_seed = {}
# Mark the weight as unmerged
self._disable_adapters = False
self.merged_adapters = []
self.kwargs = kwargs
base_layer = self.get_base_layer()
if isinstance(base_layer, nn.Linear):
self.in_features, self.out_features = base_layer.in_features, base_layer.out_features
elif isinstance(base_layer, Conv1D):
self.in_features, self.out_features = (
base_layer.weight.ds_shape if hasattr(base_layer.weight, "ds_shape") else base_layer.weight.shape
)
else:
raise ValueError(f"Unsupported layer type {type(base_layer)}")
def update_layer(self, adapter_name, n_frequency, scaling, init_weights, random_loc_seed):
if n_frequency <= 0:
raise ValueError(f"`n_frequency` should be a positive integer value but the value passed is {n_frequency}")
if n_frequency > self.in_features * self.out_features:
raise ValueError(
f"`n_frequency` should be less than or equal to the product of the input and output dimensions "
f"but the value passed is {n_frequency} and the product is {self.in_features * self.out_features}"
)
self.fourierft_n_frequency[adapter_name] = n_frequency
self.fourierft_random_loc_seed[adapter_name] = random_loc_seed
self.indices[adapter_name] = torch.randperm(
self.out_features * self.in_features,
generator=torch.Generator().manual_seed(self.fourierft_random_loc_seed[adapter_name]),
)[:n_frequency]
self.indices[adapter_name] = torch.stack(
[self.indices[adapter_name] // self.in_features, self.indices[adapter_name] % self.in_features], dim=0
)
self.fourierft_scaling[adapter_name] = scaling
# Actual trainable parameters
self.fourierft_spectrum[adapter_name] = nn.Parameter(torch.randn(n_frequency), requires_grad=True)
if init_weights:
self.reset_fourier_parameters(adapter_name)
self._move_adapter_to_device_of_base_layer(adapter_name)
self.set_adapter(self.active_adapters)
@torch.no_grad()
def reset_fourier_parameters(self, adapter_name):
if adapter_name in self.fourierft_spectrum.keys():
nn.init.zeros_(self.fourierft_spectrum[adapter_name])
def get_delta_weight(self, adapter) -> torch.Tensor:
spectrum = self.fourierft_spectrum[adapter]
indices = self.indices[adapter].to(spectrum.device)
dense_spectrum = torch.zeros(self.out_features, self.in_features, device=spectrum.device, dtype=spectrum.dtype)
dense_spectrum[indices[0, :], indices[1, :]] = spectrum
delta_weight = torch.fft.ifft2(dense_spectrum).real * self.fourierft_scaling[adapter]
return delta_weight
class FourierFTLinear(nn.Module, FourierFTLayer):
# FourierFT implemented in a dense layer
def __init__(
self,
base_layer,
adapter_name: str,
n_frequency: int = 1000,
scaling: float = 150.0,
fan_in_fan_out: bool = False, # Set this to True if the layer to replace stores weight like (fan_in, fan_out)
init_weights: Union[bool, str] = False,
random_loc_seed: int = 777,
**kwargs,
) -> None:
super().__init__()
FourierFTLayer.__init__(self, base_layer, **kwargs)
self.fan_in_fan_out = fan_in_fan_out
self._active_adapter = adapter_name
self.update_layer(adapter_name, n_frequency, scaling, init_weights, random_loc_seed)
def merge(self, safe_merge: bool = False, adapter_names: Optional[List[str]] = None) -> None:
"""
Merge the active adapter weights into the base weights
Args:
safe_merge (`bool`, *optional*):
If True, the merge operation will be performed in a copy of the original weights and check for NaNs
before merging the weights. This is useful if you want to check if the merge operation will produce
NaNs. Defaults to `False`.
adapter_names (`List[str]`, *optional*):
The list of adapter names that should be merged. If None, all active adapters will be merged. Defaults
to `None`.
"""
adapter_names = check_adapters_to_merge(self, adapter_names)
if not adapter_names:
# no adapter to merge
return
for active_adapter in adapter_names:
if active_adapter in self.fourierft_spectrum.keys():
base_layer = self.get_base_layer()
if safe_merge:
# Note that safe_merge will be slower than the normal merge
# because of the copy operation.
orig_weights = base_layer.weight.data.clone()
orig_weights += self.get_delta_weight(active_adapter)
if not torch.isfinite(orig_weights).all():
raise ValueError(
f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken"
)
base_layer.weight.data = orig_weights
else:
base_layer.weight.data += self.get_delta_weight(active_adapter)
self.merged_adapters.append(active_adapter)
def unmerge(self) -> None:
"""
This method unmerges all merged adapter layers from the base weights.
"""
if not self.merged:
warnings.warn("Already unmerged. Nothing to do.")
return
while len(self.merged_adapters) > 0:
active_adapter = self.merged_adapters.pop()
if active_adapter in self.fourierft_spectrum.keys():
self.get_base_layer().weight.data -= self.get_delta_weight(active_adapter)
def get_delta_weight(self, adapter) -> torch.Tensor:
return super().get_delta_weight(adapter)
def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor:
previous_dtype = x.dtype
if self.disable_adapters:
if self.merged:
self.unmerge()
result = self.base_layer(x, *args, **kwargs)
elif self.merged:
result = self.base_layer(x, *args, **kwargs)
else:
result = self.base_layer(x, *args, **kwargs)
for active_adapter in self.active_adapters:
if active_adapter not in self.fourierft_spectrum.keys():
continue
delta_w = self.get_delta_weight(active_adapter)
x = x.to(delta_w.dtype)
result = result + F.linear(x, delta_w)
result = result.to(previous_dtype)
return result
def __repr__(self) -> str:
rep = super().__repr__()
return "fourierft." + rep