Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2023-present the HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from __future__ import annotations | |
import builtins | |
from typing import Optional, Union | |
import torch | |
import torch.nn as nn | |
from .config import XLoraConfig | |
Number = Union[builtins.int, builtins.float, builtins.bool] | |
class TemperatureScaledSoftmax(nn.Module): | |
def __init__(self, temperature=1.0): | |
super().__init__() | |
self.temperature = temperature | |
self.softmax = nn.Softmax(dim=-1) | |
def forward(self, logits): | |
# Scale logits by the temperature | |
scaled_logits = logits / self.temperature | |
# Apply softmax to the scaled logits | |
return self.softmax(scaled_logits) | |
class XLoraClassifier(nn.Module): | |
""" | |
A classifier to select LoRA layers for XLora. | |
""" | |
def __init__( | |
self, | |
model: nn.Module, # PeftModel | |
config: XLoraConfig, | |
n_classes: int, | |
n_layers: int, | |
device: torch.device, | |
): | |
""" | |
Construct an X-LoRA classifier from a model, config and some metadata. Note that n_layers is the number of LoRA | |
adapter layers, not the number of model layers. | |
""" | |
super().__init__() | |
self.n_classes = n_classes | |
self.n_layers = n_layers | |
self.config = config | |
self.log_scalings = [] | |
self.softmax = TemperatureScaledSoftmax(temperature=self.config.softmax_temperature) | |
self.override_scaling_pass_value: Number = config.scaling_pass_value | |
self.scalings_logging = False | |
self.dtype = next(model.parameters()).dtype | |
add_dropout = config.xlora_dropout_p > 0.0 | |
layers = [] | |
if self.config.xlora_depth == 1: | |
if config.layerwise_scalings: # bias=False if we have just one layer | |
last = nn.Linear(config.hidden_size, n_classes * n_layers, bias=True).to(device).to(self.dtype) | |
else: | |
last = nn.Linear(config.hidden_size, n_classes, bias=True).to(device).to(self.dtype) | |
else: | |
if self.config.xlora_depth <= 0: | |
raise ValueError("X-LoRA depth must be strictly positive.") | |
layers.append(nn.Linear(config.hidden_size, config.xlora_size, bias=True).to(device).to(self.dtype)) | |
layers.append(nn.ReLU()) | |
if add_dropout: | |
layers.append(nn.Dropout(p=config.xlora_dropout_p)) | |
for _ in range(config.xlora_depth - 2): | |
layers.append(nn.Linear(config.xlora_size, config.xlora_size, bias=True).to(device).to(self.dtype)) | |
layers.append(nn.ReLU()) | |
if add_dropout: | |
layers.append(nn.Dropout(p=config.xlora_dropout_p)) | |
if config.layerwise_scalings: | |
last = nn.Linear(config.xlora_size, n_classes * n_layers, bias=True).to(device).to(self.dtype) | |
else: | |
last = nn.Linear(config.xlora_size, n_classes, bias=True).to(device).to(self.dtype) | |
self.layers = nn.Sequential(*layers, last) | |
def make_dummy_scalings( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
*args, | |
**kwargs, | |
) -> torch.Tensor: | |
""" | |
Make some dummy scalings for the scalings pass (the one to get the logits for the X-LoRA classifier). These are | |
of shape (batch_size, seq_len, n_layers, n_classes) and filled with the override scalings pass value. Note that | |
n_layers is the number of LoRA adapter layers, not the number of model layers. | |
""" | |
if input_ids is not None: | |
batch_size = input_ids.shape[0] | |
device = input_ids.device | |
seq_len = input_ids.shape[1] | |
else: | |
batch_size = inputs_embeds.shape[0] | |
device = inputs_embeds.device | |
seq_len = inputs_embeds.shape[1] | |
return torch.full( # type: ignore | |
(batch_size, seq_len, self.n_layers, self.n_classes), | |
self.override_scaling_pass_value, | |
).to(device=device, dtype=self.dtype) | |
def forward( | |
self, | |
result, | |
input_ids: Optional[torch.LongTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
*args, | |
**kwargs, | |
) -> torch.Tensor: | |
""" | |
Using the hidden states of the model, predict `n_classes` LoRA alpha values. Returns the scalings. | |
""" | |
if input_ids is not None: | |
batch_size = input_ids.shape[0] | |
seq_len = input_ids.shape[1] | |
else: | |
batch_size = inputs_embeds.shape[0] | |
seq_len = inputs_embeds.shape[1] | |
hidden_states = result.hidden_states # type: ignore | |
hidden_state = hidden_states[-1] # Get the last hidden state | |
### Classifier run | |
# hidden_state=[batch_size, seq_len, hidden_size] | |
logits = self.layers.forward(hidden_state) | |
### Repeat to make layerwise scalings | |
### If layerwise_scalings=False, then the classifier only outputs logits which are not layer-wise. | |
### So, we expand them to the correct shape. | |
if not self.config.layerwise_scalings: | |
logits = logits.unsqueeze(2) | |
logits = logits.expand(-1, -1, self.n_layers, -1) | |
### Classifier run | |
scalings = logits.reshape(batch_size, seq_len, self.n_layers, self.n_classes) | |
# scalings = [batch_size, seq_len, n_layers, n_classes] | |
if self.config.enable_softmax: | |
scalings = self.softmax(scalings) | |
if self.scalings_logging: | |
self.log_scalings.append(scalings) | |
return scalings | |
def _get_bucketed_scalings(self) -> dict[int, tuple[list[int], list[torch.Tensor]]]: | |
""" | |
Returns bucketed scalings, bucketed by seq_len. Each value consists of the positions (the first) and the | |
associated tensors. The positions are paired with the associated tensors and give the position in the scaling | |
log. Each scaling is a tensor of shape (batch_size, seq_len, n_layers, n_classes)). | |
""" | |
seqlens_map: dict[int, tuple[list[int], list[torch.Tensor]]] = {} | |
for i, scaling in enumerate(self.log_scalings): | |
seq_len = scaling.shape[1] | |
if seq_len not in seqlens_map: | |
seqlens_map[seq_len] = ([i], [scaling]) | |
else: | |
seqlens_map[seq_len][0].append(i) | |
seqlens_map[seq_len][1].append(scaling) | |
return seqlens_map | |
def _set_override_scaling_pass_value(self, value: Union[Number, None]): | |
if value is None: | |
self.override_scaling_pass_value = 1 / self.n_classes | |
else: | |
self.override_scaling_pass_value = value | |
self.config.scaling_pass_value = self.override_scaling_pass_value | |