Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024-present the HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import math | |
import warnings | |
from typing import Any, List, Optional, Union | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from peft.tuners.tuners_utils import BaseTunerLayer, check_adapters_to_merge | |
class HRALayer(BaseTunerLayer): | |
# All names of layers that may contain (trainable) adapter weights | |
adapter_layer_names = ("hra_u",) | |
# All names of other parameters that may contain adapter-related parameters | |
other_param_names = ("hra_r", "hra_apply_GS") | |
def __init__(self, base_layer: nn.Module, **kwargs) -> None: | |
self.base_layer = base_layer | |
self.hra_r = {} | |
self.hra_apply_GS = {} | |
self.hra_u = nn.ParameterDict({}) | |
# Mark the weight as unmerged | |
self._disable_adapters = False | |
self.merged_adapters = [] | |
self.kwargs = kwargs | |
base_layer = self.get_base_layer() | |
if isinstance(base_layer, nn.Linear): | |
self.in_features, self.out_features = base_layer.in_features, base_layer.out_features | |
elif isinstance(base_layer, nn.Conv2d): | |
self.in_features, self.out_features = base_layer.in_channels, base_layer.out_channels | |
else: | |
raise ValueError(f"Unsupported layer type {type(base_layer)}") | |
def update_layer( | |
self, | |
adapter_name: str, | |
r: int, | |
apply_GS: bool, | |
init_weights: bool, | |
**kwargs, | |
) -> None: | |
"""Internal function to create hra adapter | |
Args: | |
adapter_name (`str`): Name for the adapter to add. | |
r (`int`): Rank for the added adapter. | |
init_weights (`bool`): Whether to initialize weights. | |
apply_GS (`bool`): Whether to apply Gram-Schmidt orthogonalization or not. | |
""" | |
if r <= 0: | |
raise ValueError(f"`r` should be a positive integer value but the value passed is {r}") | |
self.hra_r[adapter_name] = r | |
self.hra_apply_GS[adapter_name] = apply_GS | |
# Determine shape of HRA weights | |
base_layer = self.get_base_layer() | |
if isinstance(base_layer, nn.Linear): | |
self.hra_u[adapter_name] = nn.Parameter(torch.empty(self.in_features, r), requires_grad=True) | |
elif isinstance(base_layer, nn.Conv2d): | |
self.hra_u[adapter_name] = nn.Parameter( | |
torch.empty(self.in_features * base_layer.kernel_size[0] * base_layer.kernel_size[0], r), | |
requires_grad=True, | |
) | |
else: | |
raise TypeError(f"HRA is not implemented for base layers of type {type(base_layer).__name__}") | |
# Initialize weights | |
if init_weights: | |
self.reset_hra_parameters(adapter_name) | |
else: | |
self.reset_hra_parameters_random(adapter_name) | |
# Move new weights to device | |
self._move_adapter_to_device_of_base_layer(adapter_name) | |
self.set_adapter(self.active_adapters) | |
def reset_hra_parameters(self, adapter_name: str): | |
if self.hra_r[adapter_name] % 2 != 0: | |
warnings.warn("The symmetric initialization can NOT be performed when r is odd!") | |
nn.init.kaiming_uniform_(self.hra_u[adapter_name], a=math.sqrt(5)) | |
else: | |
shape = self.hra_u[adapter_name].shape | |
half_u = torch.zeros(shape[0], shape[1] // 2) | |
nn.init.kaiming_uniform_(half_u, a=math.sqrt(5)) | |
self.hra_u[adapter_name] = nn.Parameter(torch.repeat_interleave(half_u, 2, dim=1)) | |
def reset_hra_parameters_random(self, adapter_name: str): | |
nn.init.kaiming_uniform_(self.hra_u[adapter_name], a=math.sqrt(5)) | |
def scale_layer(self, scale: float) -> None: | |
if scale == 1: | |
return | |
for active_adapter in self.active_adapters: | |
if active_adapter not in self.hra_u.keys(): | |
continue | |
warnings.warn("Scaling operation for HRA not supported! Automatically set scale to 1.") | |
def unscale_layer(self, scale=None) -> None: | |
for active_adapter in self.active_adapters: | |
if active_adapter not in self.hra_u.keys(): | |
continue | |
warnings.warn("Unscaling operation for HRA not supported! Keeping scale at 1.") | |
class HRALinear(nn.Module, HRALayer): | |
""" | |
HRA implemented in a dense layer. | |
""" | |
def __init__( | |
self, | |
base_layer, | |
adapter_name: str, | |
r: int = 0, | |
apply_GS: bool = False, | |
init_weights: Union[bool, str] = True, | |
**kwargs, | |
) -> None: | |
super().__init__() | |
HRALayer.__init__(self, base_layer, **kwargs) | |
self._active_adapter = adapter_name | |
self.update_layer(adapter_name, r, apply_GS, init_weights, **kwargs) | |
def merge(self, safe_merge: bool = False, adapter_names: Optional[List[str]] = None) -> None: | |
""" | |
Merge the active adapter weights into the base weights | |
Args: | |
safe_merge (`bool`, *optional*): | |
If `True`, the merge operation will be performed in a copy of the original weights and check for NaNs | |
before merging the weights. This is useful if you want to check if the merge operation will produce | |
NaNs. Defaults to `False`. | |
adapter_names (`List[str]`, *optional*): | |
The list of adapter names that should be merged. If `None`, all active adapters will be merged. | |
Defaults to `None`. | |
""" | |
adapter_names = check_adapters_to_merge(self, adapter_names) | |
if not adapter_names: | |
# no adapter to merge | |
return | |
for active_adapter in adapter_names: | |
if active_adapter in self.hra_u.keys(): | |
base_layer = self.get_base_layer() | |
if safe_merge: | |
# Note that safe_merge will be slower than the normal merge | |
# because of the copy operation. | |
orig_weight = base_layer.weight.data.clone() | |
delta_weight = self.get_delta_weight(active_adapter) | |
orig_weight = torch.mm(orig_weight, delta_weight) | |
if not torch.isfinite(orig_weight).all(): | |
raise ValueError( | |
f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken" | |
) | |
self.base_layer.weight.data = orig_weight | |
else: | |
delta_weight = self.get_delta_weight(active_adapter) | |
self.base_layer.weight.data = torch.mm(self.base_layer.weight.data, delta_weight) | |
self.merged_adapters.append(active_adapter) | |
def unmerge(self) -> None: | |
""" | |
This method unmerges all merged adapter layers from the base weights. | |
""" | |
if not self.merged: | |
warnings.warn("Already unmerged. Nothing to do.") | |
return | |
while len(self.merged_adapters) > 0: | |
active_adapter = self.merged_adapters.pop() | |
if active_adapter in self.hra_u.keys(): | |
orig_weight = self.get_base_layer().weight.data.clone() | |
delta_weight = self.get_delta_weight(active_adapter, reverse=True) | |
self.get_base_layer().weight.data = torch.mm(orig_weight, delta_weight) | |
def get_delta_weight(self, adapter_name: str, reverse: bool = False) -> torch.Tensor: | |
rank = self.hra_r[adapter_name] | |
apply_GS = self.hra_apply_GS[adapter_name] | |
opt_u = self.hra_u[adapter_name] | |
shape = opt_u.shape | |
if apply_GS: | |
weight = [(opt_u[:, 0] / opt_u[:, 0].norm()).view(-1, 1)] | |
for i in range(1, rank): | |
ui = opt_u[:, i].view(-1, 1) | |
for j in range(i): | |
ui = ui - (weight[j].t() @ ui) * weight[j] | |
weight.append((ui / ui.norm()).view(-1, 1)) | |
weight = torch.cat(weight, dim=1) | |
weight = torch.eye(shape[0], device=opt_u.device, dtype=opt_u.dtype) - 2 * weight @ weight.t() | |
else: | |
opt_u = opt_u / opt_u.norm(dim=0) | |
weight = torch.eye(shape[0], device=opt_u.device, dtype=opt_u.dtype) | |
if reverse: | |
indices = range(rank - 1, -1, -1) | |
else: | |
indices = range(rank) | |
for i in indices: | |
ui = opt_u[:, i].view(-1, 1) | |
weight = weight - 2 * weight @ ui @ ui.t() | |
return weight | |
def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor: | |
previous_dtype = x.dtype | |
if self.disable_adapters: | |
if self.merged: | |
self.unmerge() | |
result = self.base_layer(x, *args, **kwargs) | |
elif self.merged: | |
result = self.base_layer(x, *args, **kwargs) | |
else: | |
new_weight = torch.eye(self.in_features, device=x.device) | |
for active_adapter in self.active_adapters: | |
if active_adapter not in self.hra_u.keys(): | |
continue | |
delta_weight = self.get_delta_weight(active_adapter) | |
new_weight = torch.mm(new_weight, delta_weight) | |
x = x.to(self.get_base_layer().weight.data.dtype) | |
orig_weight = self.get_base_layer().weight.data | |
new_weight = torch.mm(orig_weight, new_weight) | |
result = F.linear(input=x, weight=new_weight, bias=self.base_layer.bias) | |
result = result.to(previous_dtype) | |
return result | |
def __repr__(self) -> str: | |
rep = super().__repr__() | |
return "hra." + rep | |
class HRAConv2d(nn.Module, HRALayer): | |
"""HRA implemented in Conv2d layer""" | |
def __init__( | |
self, | |
base_layer, | |
adapter_name: str, | |
r: int = 0, | |
apply_GS: bool = False, | |
init_weights: Union[bool, str] = True, | |
**kwargs, | |
): | |
super().__init__() | |
HRALayer.__init__(self, base_layer) | |
self._active_adapter = adapter_name | |
self.update_layer(adapter_name, r, apply_GS, init_weights, **kwargs) | |
def merge(self, safe_merge: bool = False, adapter_names: Optional[List[str]] = None) -> None: | |
""" | |
Merge the active adapter weights into the base weights | |
Args: | |
safe_merge (`bool`, *optional*): | |
If `True`, the merge operation will be performed in a copy of the original weights and check for NaNs | |
before merging the weights. This is useful if you want to check if the merge operation will produce | |
NaNs. Defaults to `False`. | |
adapter_names (`List[str]`, *optional*): | |
The list of adapter names that should be merged. If `None`, all active adapters will be merged. | |
Defaults to `None`. | |
""" | |
adapter_names = check_adapters_to_merge(self, adapter_names) | |
if not adapter_names: | |
# no adapter to merge | |
return | |
for active_adapter in adapter_names: | |
if active_adapter in self.hra_u.keys(): | |
base_layer = self.get_base_layer() | |
if safe_merge: | |
# Note that safe_merge will be slower than the normal merge | |
# because of the copy operation. | |
orig_weight = base_layer.weight.data.clone() | |
orig_weight = orig_weight.view( | |
self.out_features, | |
self.in_features * self.base_layer.kernel_size[0] * self.base_layer.kernel_size[0], | |
) | |
delta_weight = self.get_delta_weight(active_adapter) | |
orig_weight = torch.mm(orig_weight, delta_weight) | |
orig_weight = orig_weight.view( | |
self.out_features, | |
self.in_features, | |
self.base_layer.kernel_size[0], | |
self.base_layer.kernel_size[0], | |
) | |
if not torch.isfinite(orig_weight).all(): | |
raise ValueError( | |
f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken" | |
) | |
self.base_layer.weight.data = orig_weight | |
else: | |
orig_weight = base_layer.weight.data | |
orig_weight = orig_weight.view( | |
self.out_features, | |
self.in_features * self.base_layer.kernel_size[0] * self.base_layer.kernel_size[0], | |
) | |
delta_weight = self.get_delta_weight(active_adapter) | |
orig_weight = torch.mm(orig_weight, delta_weight) | |
orig_weight = orig_weight.view( | |
self.out_features, | |
self.in_features, | |
self.base_layer.kernel_size[0], | |
self.base_layer.kernel_size[0], | |
) | |
self.base_layer.weight.data = orig_weight | |
self.merged_adapters.append(active_adapter) | |
def unmerge(self) -> None: | |
""" | |
This method unmerges all merged adapter layers from the base weights. | |
""" | |
if not self.merged: | |
warnings.warn("Already unmerged. Nothing to do.") | |
return | |
while len(self.merged_adapters) > 0: | |
active_adapter = self.merged_adapters.pop() | |
if active_adapter in self.hra_u.keys(): | |
orig_weight = self.get_base_layer().weight.data.clone() | |
orig_weight = orig_weight.view( | |
self.out_features, | |
self.in_features * self.base_layer.kernel_size[0] * self.base_layer.kernel_size[0], | |
) | |
delta_weight = self.get_delta_weight(active_adapter, reverse=True) | |
orig_weight = torch.mm(orig_weight, delta_weight) | |
orig_weight = orig_weight.view( | |
self.out_features, self.in_features, self.base_layer.kernel_size[0], self.base_layer.kernel_size[0] | |
) | |
self.get_base_layer().weight.data = orig_weight | |
def get_delta_weight(self, adapter_name: str, reverse: bool = False) -> torch.Tensor: | |
rank = self.hra_r[adapter_name] | |
apply_GS = self.hra_apply_GS[adapter_name] | |
opt_u = self.hra_u[adapter_name] | |
shape = opt_u.shape | |
if apply_GS: | |
weight = [(opt_u[:, 0] / opt_u[:, 0].norm()).view(-1, 1)] | |
for i in range(1, rank): | |
ui = opt_u[:, i].view(-1, 1) | |
for j in range(i): | |
ui = ui - (weight[j].t() @ ui) * weight[j] | |
weight.append((ui / ui.norm()).view(-1, 1)) | |
weight = torch.cat(weight, dim=1) | |
weight = torch.eye(shape[0], device=opt_u.device, dtype=opt_u.dtype) - 2 * weight @ weight.t() | |
else: | |
opt_u = opt_u / opt_u.norm(dim=0) | |
weight = torch.eye(shape[0], device=opt_u.device, dtype=opt_u.dtype) | |
if reverse: | |
indices = range(rank - 1, -1, -1) | |
else: | |
indices = range(rank) | |
for i in indices: | |
ui = opt_u[:, i].view(-1, 1) | |
weight = weight - 2 * weight @ ui @ ui.t() | |
return weight | |
def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor: | |
previous_dtype = x.dtype | |
if self.disable_adapters: | |
if self.merged: | |
self.unmerge() | |
result = self.base_layer(x, *args, **kwargs) | |
elif self.merged: | |
result = self.base_layer(x, *args, **kwargs) | |
else: | |
new_weight = torch.eye( | |
self.in_features * self.base_layer.kernel_size[0] * self.base_layer.kernel_size[0], | |
device=x.device, | |
dtype=previous_dtype, | |
) | |
for active_adapter in self.active_adapters: | |
if active_adapter not in self.hra_u.keys(): | |
continue | |
delta_weight = self.get_delta_weight(active_adapter) | |
new_weight = torch.mm(new_weight, delta_weight) | |
x = x.to(self.base_layer.weight.data.dtype) | |
orig_weight = self.base_layer.weight.data | |
orig_weight = orig_weight.view( | |
self.out_features, | |
self.in_features * self.base_layer.kernel_size[0] * self.base_layer.kernel_size[0], | |
) | |
new_weight = torch.mm(orig_weight, new_weight) | |
new_weight = new_weight.view( | |
self.out_features, | |
self.in_features, | |
self.base_layer.kernel_size[0], | |
self.base_layer.kernel_size[0], | |
) | |
result = F.conv2d( | |
input=x, | |
weight=new_weight, | |
bias=self.base_layer.bias, | |
padding=self.base_layer.padding[0], | |
stride=self.base_layer.stride[0], | |
) | |
result = result.to(previous_dtype) | |
return result | |
def __repr__(self) -> str: | |
rep = super().__repr__() | |
return "hra." + rep | |