Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024-present the HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from __future__ import annotations | |
from dataclasses import dataclass, field | |
from typing import Optional, Union | |
from peft.config import PeftConfig | |
from peft.utils import PeftType | |
class HRAConfig(PeftConfig): | |
""" | |
This is the configuration class to store the configuration of a [`HRAModel`]. | |
Args: | |
r (`int`): | |
The rank of HRA across different layers. It is best to set 'r' to an even number; otherwise, the default | |
initialization method will not work. | |
apply_GS (`bool`): | |
Whether to apply Gram-Schmidt orthogonalization. | |
target_modules (`Optional[Union[List[str], str]]`): | |
The names of the modules to apply the adapter to. If this is specified, only the modules with the specified | |
names will be replaced. When passing a string, a regex match will be performed. When passing a list of | |
strings, either an exact match will be performed or it is checked if the name of the module ends with any | |
of the passed strings. If this is specified as 'all-linear', then all linear modules are chosen, excluding | |
the output layer. If this is not specified, modules will be chosen according to the model architecture. If | |
the architecture is not known, an error will be raised -- in this case, you should specify the target | |
modules manually. | |
exclude_modules (`Optional[Union[List[str], str]]`): | |
The names of the modules to not apply the adapter. When passing a string, a regex match will be performed. | |
When passing a list of strings, either an exact match will be performed or it is checked if the name of the | |
module ends with any of the passed strings. | |
init_weights (`bool`): | |
Whether to perform initialization of HRA weights. | |
layers_to_transform (`Union[List[int], int]`): | |
The layer indices to transform. If a list of ints is passed, it will apply the adapter to the layer indices | |
that are specified in this list. If a single integer is passed, it will apply the transformations on the | |
layer at this index. | |
layers_pattern (`Optional[Union[List[str], str]]`): | |
The layer pattern name, used only if `layers_to_transform` is different from `None`. This should target the | |
`nn.ModuleList` of the model, which is often called `'layers'` or `'h'`. | |
rank_pattern (`dict`): | |
The mapping from layer names or regexp expression to ranks which are different from the default rank | |
specified by `r`. | |
modules_to_save (`List[str]`): | |
List of modules apart from adapter layers to be set as trainable and saved in the final checkpoint. | |
""" | |
r: int = field( | |
default=8, | |
metadata={ | |
"help": "The rank of HRA across different layers.", | |
"note": "It is best to set 'r' to an even number; otherwise, the default initialization method will not work.", | |
}, | |
) | |
apply_GS: bool = field( | |
default=False, | |
metadata={"help": "Whether to apply Gram-Schmidt orthogonalization or not."}, | |
) | |
target_modules: Optional[Union[list[str], str]] = field( | |
default=None, | |
metadata={ | |
"help": "List of module names or regex expression of the module names to replace with HRA.", | |
"example": "For example, ['q', 'v'] or '.*decoder.*(SelfAttention|EncDecAttention).*(q|v)$' ", | |
}, | |
) | |
exclude_modules: Optional[Union[list[str], str]] = field( | |
default=None, | |
metadata={"help": "List of module names or regex expression of the module names to exclude from HRA."}, | |
) | |
init_weights: bool = field( | |
default=True, | |
metadata={ | |
"help": ( | |
"Whether to initialize the weights of the HRA layers with their default initialization. Don't change " | |
"this setting, except if you know exactly what you're doing." | |
), | |
}, | |
) | |
layers_to_transform: Optional[Union[list[int], int]] = field( | |
default=None, | |
metadata={ | |
"help": "The layer indexes to transform, is this argument is specified, PEFT will transform only the layers indexes that are specified inside this list. If a single integer is passed, PEFT will transform only the layer at this index." | |
}, | |
) | |
layers_pattern: Optional[Union[list[str], str]] = field( | |
default=None, | |
metadata={ | |
"help": "The layer pattern name, used only if `layers_to_transform` is different to None and if the layer pattern is not in the common layers pattern. " | |
"This should target the `nn.ModuleList` of the model, which is often called `'layers'` or `'h'`." | |
}, | |
) | |
bias: str = field(default="none", metadata={"help": "Bias type for HRA. Can be 'none', 'all' or 'hra_only'"}) | |
modules_to_save: Optional[list[str]] = field( | |
default=None, | |
metadata={ | |
"help": "List of modules apart from HRA layers to be set as trainable and saved in the final checkpoint. " | |
"For example, in Sequence Classification or Token Classification tasks, " | |
"the final layer `classifier/score` are randomly initialized and as such need to be trainable and saved." | |
}, | |
) | |
def __post_init__(self): | |
super().__post_init__() | |
self.peft_type = PeftType.HRA | |
self.target_modules = ( | |
set(self.target_modules) if isinstance(self.target_modules, list) else self.target_modules | |
) | |
self.exclude_modules = ( | |
set(self.exclude_modules) if isinstance(self.exclude_modules, list) else self.exclude_modules | |
) | |
# if target_modules is a regex expression, then layers_to_transform should be None | |
if isinstance(self.target_modules, str) and self.layers_to_transform is not None: | |
raise ValueError("`layers_to_transform` cannot be used when `target_modules` is a str.") | |
# if target_modules is a regex expression, then layers_pattern should be None | |
if isinstance(self.target_modules, str) and self.layers_pattern is not None: | |
raise ValueError("`layers_pattern` cannot be used when `target_modules` is a str.") | |
# check for layers_to_transform and layers_pattern | |
if self.layers_pattern and not self.layers_to_transform: | |
raise ValueError("When `layers_pattern` is specified, `layers_to_transform` must also be specified. ") | |